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* Artificial Intelligence and ML

* Traditional Programming and ML

e ML Online Courses

* Main algorithms

Regression

Gradient Descent
Underfitting, Overfitting
Regularization

Decision tree

Support vector machine
PCA, K-mean



ARTIFICIAL INTELLIGENCE

IS NOT NEW - :

| ARTIFICIAL INTELLIGENCE

Any technique which enables BV ST i e
computers to mimic human VIALTT

behavior

A subset of ML which make

the computation of multi-layer
neural networks feasible

—




Machine Learning: multi-disciplinary field

Machine Leaming




Traditional Programming and ML
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Supervised Learning

Regression

Decision trees
Support Vector Machine
Neural Networks

Ensembles
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Supervised learning: regression models for house price prediction
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Supervised Learning

Classification

Logistic Regression
Discriminant Analysis
Decision Trees

Support Vector Machine
Neural Networks

Ensembles
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Unsupervised Learning

Clustering
Dimensionality reduction

TRANSACTIONS
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Unsupervised learning: association rule-mining

Original 3-D data (Swiss Roll)

2-D data (after PCA)
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https://www.coursera.org/ (Andrew Ng)

Introduction

Linear Regression with One Variable

Gradient Descent (GD)

Multivariate Linear Regression (Multiple features; GD for Multiple features; Normal Equations )

Logistic regression (Hypothesis Representation; Cost Function; GD; Advanced optimization; Multiclass Classification )
Neural Networks (Non-linear Hypotheses; Neurons and the Brain; Forward and Backward Propagation)

Advice for Applying Machine learning (Train-Test Sets; Regularization; Diagnosing Bias vs Variance; Learning Curves)
Support Vector Machines (Optimization Objective; Large Margin Intuition; Kernels)

Unsupervised learning (K-mean Algorithm)

Principal Component Analysis

Anomaly Detection

Large Scale Machine Learning (Learning with Large Datasets; Stochastic GD; Mini-Batch GD; Map Reduce; Data Parallelism)


https://www.coursera.org/

KTU

Introduction

Linear and Logistic Regression

Bias and variance tradeoff

Linear and quadratic discriminant analysis
Decision Trees

Support Vector Methods

Artificial Neural Networks

Ensemble models

Unsupervised learning

Principal Component Analysis



https://www.udemy.com

* Python for Data Science and Machine Learning Bootcamp

(Learn how to use NumPy, Pandas, Seaborn , Matplotlib, Plotly, Scikit-Learn , Machine Learning,
Tensorflow , and more!)

* Machine Learning A-Z™: Hands-On Python & R In Data Science

Learn to create Machine Learning Algorithms in Python and R from two Data Science experts. Code
templates included.

* Machine Learning Data Science and Deep Learning with Python

Complete hands-on machine learning tutorial with data science, Tensorflow, artificial intelligence, and
neural networks

12


https://www.udemy.com/

Supervised Learning

Regression
Gradient Descent
Train - test — validate
Cross - validation
Underfitting
Overfitting
Regularization

Decision Tree
Support vector machines
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.- Size (feet?) | Number of | Number of | Age of home Price ($1000)
. bedrooms floors (years
Regression %, | =% | v el Y
2104 | 5 | 1 45 460
1416 | 3 | 2 | 40 232 F wmz= 41
1534 3 2 30 315 _—
852 2 1 36 178
HypOthESiS: hg(x) = 00 + 01x1+ Bzxz + -+ ann !

n — number of features;

x® — input (features) of i training example;

xj(i) - value of feature j in it" training example;
Cost function: /(0) = — Y™, (he(xW) — y(l))
Gradient Descent:
a — learning rate
Repeat { - Gradient descent
- Conjugate gradient
By 6= a5 ) (O) - BFGS

} - L-BFGS

14



Threshold classifier output hg(x) at 0.5:

Logistic Regression

Classification y € {0, 1}
* Email: Spam / Not Spam?
* Online Transaction: Fraudulent (Yes / No)

* Tumor: Malignant/Benign

Gradient Descent

™m

J(0) = —=[> yDlog hg(x) + (1 — yD)log (1 — hg(z))]

1=1
Want ming J(6):
Repeat {

0; :=0; — agyJ(0)

If hg(z) > 0.5, predict “y = 1”

If ho(x) < 0.5, predict “y = 0”

9(2) = Tye=
A
1- 9(2)

ho(z) = g(6" @)

15
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Overfitting

Example: Linear regression (housing prices)

Price
Price
Price

\ N

Size Size

- by —|—91£IJ—|-925132 = 0o ‘|‘91$‘|'92372 ‘|‘93553+0437

Ok’ M MesT Ve ght”  TOoweReT THG wieng”

Overfitting: If we have too many features, the learned hypothesis

"L

may fit the training set very well (/(¢) = 5, zZl(h () —y)* ~ 0), but fail
to generalize to new examples (predict prices on new examples).
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Example: Logistic regression

h@(il?) — 9(90 + 0121 + (92332)
(g = sigmoid function)

MUl i€

9(00 + 0121 + 0229 9(90 + 60121 + 92:1:%

‘(9333% + 943]% —|—93£E§£E2 + 94:13%:1;%
‘955151552) +95$f£6% + Hax‘fxg -+ .. )

“ Ot
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Available Data

\

Training Testing

New Available Data

\

Training Validation Testing

The training set is the set of data we analyse (train on) to design the rules in the model.

The validation set is a set of data that we did not use when training our model that we use to assess how well these
rules perform on new data. It is also a set we use to tune parameters and input features for our model so that it gives

us what we think is the best performance possible for new data.

The test set is a set of data we did not use to train our model or use in the validation set to inform our choice of
parameters/input features. We will use it as a final test once we have decided on our final model, to get the best

possible estimate of how successful our model will be when used on entirely new data.
19
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Underfitting
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High Variance
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Flexibility

Left: Data simulated from f, shown in black. Three estimates of
f are shown: the linear regression line (orange curve), and two smoothing spline
fits (blue and green curves). Right: Training MSE (grey curve), test MSE (red
curve), and minimum possible test MSE over all methods (dashed line). Squares
represent the training and test MSEs for the three fits shown in the left-hand

panel.
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Evaluating your hypothesis

Dataset:
Size Price
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Model selection

(\\ (“
1. he(z) =609+ 010 —> l“le'\ﬁtb\ —2 em — S 0")

2. hé(x) =6 + 012 + 92332 > O — T (&™)
) .
3. hola) =+ttt —> Sy

10. hg(ili‘) — 0y + 01+ ---+ (91()21?10 — @U.j —> ey (e“’)

Pick 90 + 915131 + - 041134
Estimate generalization error for test set Jtest(9(4)) <

22



K-Fold Cross Validation

Validation Training
Fold Fold
1st y — Performance
»
% 2nd . — Performance ,
L
.
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© = < ) Performance,
o 4th . —» Performance 4 =
Y
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Ridge and Lasso Regression

In regularized linear regression, we choose 6 to minimize

m

7(0) = g | 3 (ho(a®) —y )2 £ X 3 63

1=1 J

Ridge regression shrinks the coefficients and it helps to reduce the model complexity and multi-collinearity.

m

7(0) = gl | (ho(a¥) —y ) + X 110
1= 7= |

Lasso regression can lead to zero coefficients i.e. some of the features are completely neglected for the
evaluation of output. So Lasso regression not only helps in reducing over-fitting but it can help us in

feature selection.
24



Decision Tree
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Decision Tree

Heuristic construction rules were invented to construct decision tree
One of them: Select the split with the lowest entropy (or Gini index) or highest information gain

* Formally, entropy is a number, calculate with the following expression:
K

E(S) = Z —pilog; p;
i=1
p; - 1s ith class proportion in data set S. K — number of different classes.

e The larger the entropy, the bigger the mess (< 1)

1.0

Entropy

02 04 06 038

26



Information
gain

High entropy ET

El
It is the measure

of decrease in
entropy after the
dataset is split

L
/ Initial Dataset

Decision Split

After
splitting

Lower entropy E2

E2 E2

: TR .. - Information gain= E1-E2
Set 2

r---_--
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Would You Survive the Titanic?

samples = 891
value = [563, 328]
class = Survived

True False

Sex_male <0.5
gini = 0.4652

sex_male =1
sex_female =0

.

Fare < 27.825 Fare = 26.95

gini = 0.4444 gini = 0.4909

samples = 225 samples = 37

value = [75, 150] value = [16, 21]

class = Dead class = Dead
gini = 0.4245 gini=0.5 g|n| 0.4628
samples = 193 samples = 32 samples = 22
value = [59, 134] value = [16, 16] value =[14, 8]

class = Dead class = Survived class = Survived

(16+0+8+28+45)+(59+4+2) 162
891 891

= 0.18

Resubstitution error: R(T) =

max depth =3

gini = 0.4362
samples = 140
value = [95, 45]

class = Survived

28



error or misclassification cost
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Support Vector Machine

Now suppose that we have a n X p data matrix X that consists of n training
observations in p-dimensional space,

L11 Lnl
xr, = : yeeey Ly = : ,
L1p Lnp
and that these observations fall into two classes—that is, y1,...,yn €

{—1,1} where —1 represents one class and 1 the other class.

Bo + Brxi1r + Baxiz + ...+ Bpxip > 01if y; =1,

Bo + B1xi1 + Baxiz + ...+ Bpxip < 01f y; = —1.




M=d!+d2

maximize M

1307ﬂ17"'713p7M
p
subject to Zﬂf =1,
j=1

Yi(Bo + Bizin + Bazio + ... + Bpxip) > M

31



Support Vector Classifiers

X
0.5 1.0 1.5 20

-0.5 0.0
|

-1.0

Xy

There are two classes of observations, shown in blue and in purple. In this case, the two classes are not separable
by a hyperplane, and so the maximal margin classifier cannot be used.

32



maximize M
IBOaIBIr--an,ela'“aen,M

p
subject to Zﬁjz =1,

j=1
Yi(Bo + B1xi1 + Boxia + ... + Bpxip) > M (1 —€;),

n
671207 Zeigcv

i=1
I | I [ I I |
05 00 05 10 15 20 25
X1 | |
€1,...,€y are slack variables that allow individual observations to be on

the wrong side of the margin or the hyperplane;

If €; > 0 then the +th observation is on the wrong side of the margin, and
we say that the ith observation has violated the margin. If ¢; > 1 then it
is on the wrong side of the hyperplane. 33



Classification with Non-linear Decision Boundaries

2
$ X°

34



Classification with Non-linear Decision Boundaries

Data projected to R”2 (nonseparable)
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Performing Non-Linear Classification using Kernel Method



Original 3-D data (Swiss Roll) 2-D data (after PCA)

Unsupervised Learning s 1 o o

Clustering A e FD o

Dimensionality reduction (PCA) PR
zl

TRANSACTIONS FREQUENT ITEMSETS

57\ L 8
-\-\é/]_\ﬁ ASSOCIATION 2. &

RULE MINING
: Y
ooe, B4 ’
ogo oo a. v &

Social network
Market segmentation analysis

Unsupervised learning: association rule-mining
36



K-Means Clustering

We have a set of features X1, X5, ..., Xy measured on n observations.
The K-means clustering procedure results from a simple and intuitive
mathematical problem. We begin by defining some notation. Let C1,...,Ck

denote sets containing the indices of the observations in each cluster. These
sets satisfy two properties:

1. C;UCyU...UCk = {1,...,n}. In other words, each observation
belongs to at least one of the K clusters.

2. Cp, NCy = 0 for all £k # k'. In other words, the clusters are non-
overlapping: no observation belongs to more than one cluster.

For instance, if the ith observation is in the kth cluster, then ¢+ € Ck. The
idea behind K-means clustering is that a good clustering is one for which the
within-cluster variation is as small as possible. The within-cluster variation
for cluster C is a measure W (C},) of the amount by which the observations
within a cluster differ from each other. Hence we want to solve the problem

K
minimize W (Cy) ¢ .
C1,....Ck

k=1 37



W(k |C| YS‘ZC'L] xz] 7

1,/ €Cy =1

where |Cj| denotes the number of observations in the kth cluster. In other
words, the within-cluster variation for the kth cluster is the sum of all of
the pairwise squared Euclidean distances between the observations in the
kth cluster, divided by the total number of observations in the kth cluster.

K-means clustering,

”

|
minimize < Z C'_
= |

C1,...,.Ck

38



Principal Component Analysis

Given a n X p data set X, how do we compute the first principal com-
ponent? Since we are only interested in variance, we assume that each of
the variables in X has been centered to have mean zero (that is, the col-
umn means of X are zero). We then look for the linear combination of the
sample feature values of the form

Zi1 = P11Ti1 + P21Ti2 + ... + Pp1Tip

that has largest sample variance, subject to the constraint that Zp _q ¢2 =1.
In other words, the first principal component loading vector solves the op-
timization problem

( 2

maximize ¢ Y ¢z | ¢ subject to Z¢31 =

1
n &~
¢11 )¢p1 i—1 le J 1
\ /
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