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Navier-Stokes equations


vt − ν∆v + (v · ∇)v + ∇p = f , (x, t) ∈ Ω × (0, 2π),

div v = 0, (x, t) ∈ Ω × (0, 2π),
v(x, t) = φ(x, t), (x, t) ∈ ∂Ω × (0, 2π),
v(x, 0) = v(x, 2π), x ∈ Ω,

• v = v(x, t) = (v1(x, t), . . . , vn(x, t)) - unknown velocity;
• p = p(x, t) - unknown pressure;
• f = f(x, t) = (f1(x, t), . . . , fn(x, t)) - given external force;
• φ = φ(x, t) = (φ1(x, t), . . . , φn(x, t)) - given boundary value;
• v(x, 0) = v(x, 2π) - periodicity condition;
• x = (x1, . . . , xn) ∈ Ω;
• ν > 0 - the viscosity coefficient.
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Time-periodic Stokes system
We consider the time-periodic Stokes system in a domain Ω

vt − ν∆v + ∇p = f , (x, t) ∈ Ω × (0, 2π),
div v = 0, (x, t) ∈ Ω × (0, 2π),

v(x, t) = φ(x), (x, t) ∈ ∂Ω × (0, 2π),
v(x, 0) = v(x, 2π), x ∈ Ω.

(1)

Figure: Domain Ω
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Domain Ω with an outlet to infinity

Figure: Domain Ω

An outlet to infinity D = {x ∈ R2 : |x1| < g(x2), x2 > R0}.
We suppose that:

• the function g satisfies the Lipschitz condition

|g(t1) − g(t2)| = L|t1 − t2|, t1, t2 > R0, g(t) ≥ const > 0;

• boundary value φ ∈ W 3/2,2(∂Ω) has a compact support.
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Time-periodic Stokes equations

Definition
By weak solution of problem (1) we understand a solenoidal vector
field v with ∇v, vt ∈ L2(0, 2π; L2(Ω)) satisfying the boundary con-
dition v|∂Ω = φ, the time periodicity condition v(x, 0) = v(x, 2π)
and the integral identity

2π∫
0

∫
Ω

vt · η dxdt + ν

2π∫
0

∫
Ω

∇v : ∇η dxdt =
2π∫
0

∫
Ω

f · η dxdt

for all time-periodic η ∈ L2(0, 2π; L2(Ω)).

6 / 51



Time-periodic Stokes equations

Since div v = 0, the necessary compatibility condition∫
σ(R)

v · n dS = −
( ∫

Γ1

φ · n dS +
∫
Λ

φ · n dS
)

= −
(
F (inn) + F (out))

holds. Here F (inn) and F (out) are the fluxes of the boundary value
φ over the inner and the outer boundaries, respectively.

7 / 51



Boundary value extension

Boundary value A extension could be constructed using similar ideas
as in paper written by K. Kaulakytė, K. Pileckas. 1

We construct the extension A in the following form:

A(x) = B(inn)(x) + B(out)(x),

where B(inn) extends the boundary value φ from the inner boundary
Γ1, and B(out) extends φ from the outer boundary Γ0.

1K. Kaulakytė, K. Pileckas, On the nonhomogeneous boundary value
problem for the Navier–Stokes system in a class of unbounded domains, J.
Math. Fluid Mech. 14(4), 693–716 (2012).
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Solvability of the time-periodic Stokes problem

We look for the solution of problem (1) in the form

v(x, t) = A(x) + u(x, t),

where A is the suitable extension of the boundary value φ.
Let us denote the following space:

L2
per(0, 2π; L2

1(Ω)) := C∞
per(0, 2π; L2

1(Ω))
L2(0,2π)

,

where L2
1(Ω) is weighted space with the norm

∥w∥L2
1(Ω) =

√√√√∫
D

|w|2g2 dx +
∫

Ω0

|w|2 dx.
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Solvability of the time-periodic Stokes problem

Theorem
Assume that the domain Ω ⊂ R2 has one outlet to infinity,
boundary value φ ∈ W 3/2,2(∂Ω) has a compact support, f ∈

L2
per(0, 2π; L2

1(Ω)). If
+∞∫
1

dx2
g3(x2) < +∞, then problem (1) has a

unique weak solution v = A + u satisfying the following estimate:

∥vt∥L2(0,2π;L2(Ω)) + ∥∇v∥L2(0,2π;L2(Ω))

≤ c

((
∥φ∥2

W 3/2,2(∂Ω)

(
1 +

+∞∫
0

1
g3(x2) dx2

))1/2

+ ∥f∥L2(0,2π;L2
1(Ω))

)
.
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Further results

These results were generalized by K. Kaulakytė and K. Pileckas,2
when the boundary condition also depends on time, i.e. φ = φ(x, t)

and the Dirichlet integral
+∞∫
1

dx2
g3(x3) may be finite or infinite.

2K. Kaulakytė, K. Pileckas, Nonhomogeneous boundary value problem for
the time periodic linearized Navier-Stokes system in a domain with outlet to
infinity, Journal of Mathematical Analysis and Applications, 2020,
https://doi.org/10.1016/j.jmaa.2020.124126

11 / 51



Motivation
The research was done participating in research project: 2017 - 2021
Junior research fellow of the research grant “Multiscale Modeling for
Viscous Flows in Domains with Complex Geometry”.3 Our goal is to
study Navier–Stokes equations in a tube structure. The main steps
are:

• to introduce a tube structure Bε, which describe some simplified
blood vessel network and to consider the Navier–Stokes equa-
tions in it;

• to use small parameter ε. It is equal the ratio of the diameter
of vessels to their length. This parameter generate two different
scales;

• to formulate theorems about existence and uniqueness of the
weak solution;

• to construct asymptotic expansions of the solution, which let us
to combine hybrid dimensions.

3This project has received funding from European Social Fund (project No.
09.3.3-LMT-K-712-01-0012) under grant agreement with the Research Council
of Lithuania (LMTLT).
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Motivation
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Graph of the tube structure
Denote B =

M⋃
j=1

ej the union of edges and assume that B is a

connected set. The union of all edges having the same end point
Ol is called the bundle Bl.

O4 O1

O2

O5

O6

O3 O7

O8

e1

e2

e3

e4

e5
e6

e7

Figure: Graph of the tube structure
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Definition of a graph

Definition
Let O1, O2, . . . , ON be N different points in Rn, n = 2, 3, and
e1, e2, . . . , eM be M closed segments each connecting two of these
points (i.e. each ej = Oij Okj

, where ij , kj ∈ {1, . . . , N}, ij ̸= kj).
All points Oi are supposed to be the ends of some segments ej . The
segments ej are called edges of the graph. A point Oi is called a
node, if it is the common end of at least two edges and Oi is called
a vertex, if it is the end of the only one edge. Any two edges ej

and ei can intersect only at the common node. The set of vertices
is supposed to be non-empty.
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Definition of a tube structure
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Definition of the tube structure

Definition

By a tube structure, we call the following domain

Bε =
( M⋃

j=1
Π(ej)

ε

)⋃(N1⋃
j=1

ωj
ε

)
.

Here we denote by Π(e)
ε the cylinder

Π(e)
ε =

{
x(e) ∈ Rn : x(e)

n ∈ (0, |e|), x(e)′

ε
∈ σ(e)

}
,

and ωj
ε = {x ∈ Rn : x − Oj

ε
∈ ωj} the nodal domains. Suppose

that it is a connected set and that the boundary ∂Bε of Bε is C2-
smooth.

17 / 51



Time-periodic Navier–Stokes equations in a thin tube
structure

Consider the time-periodic boundary value problem for the Navier–
Stokes equations in the tube structure Bε

1
εβ

vt − ν∆v + (v · ∇)v + ∇p = f , β = 0, 2,

div v = 0,

v|∂Bε = g,

v(x, t) = v(x, t + 2π),

(2)

here the fluid velocity g at the boundary ∂Bε has the following struc-
ture: g = 0 everywhere on ∂Bε except for the set γN1+1

ε , . . . , γN
ε

where γj
ε = ∂Bε ∩ ∂ωj

ε, j = N1 + 1, . . . , N. And ε is a small param-
eter equal to the ratio of the diameter of vessels to their length.
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Different scalings of the Navier–Stokes equations

We consider the problem in two different scalings concerning the
small parameter ε: one of them is ε0 (the same as proposed by
G. Panasenko and K. Pileckas4), while the other generates a big
coefficient of order ε−2 of the time derivative of the velocity. These
scalings satisfy different types of vessels such as small and very small
arterioles or capillaries.
Scalings were justified by using averaged data for E. N. Marieb and
K. Hoehn book 5 and H. N. Mayrovitz paper 6.

4G. Panasenko, K. Pileckas, Asymptotic analysis of the non-steady Navier–
Stokes equations in a tube structure. I. The case without boundary-layer-in-time,
Nonlinear Anal. Theory, Methods Appl. 122, 125-168 (2015), Asymptotic anal-
ysis of the non-steady Navier–Stokes equations in a tube structure. II. General
case, Nonlinear Anal. Theory, Methods and Appl. 125, 582-607 (2015).

5E. N. Marieb, K. Hoehn, Human Anatomy and Psysiology. The Cardiovas-
cular System: Blood Vessels, Pearson, Boston, 9th ed., 2013, p. 712

6H. N. Mayrovitz, Skin capillary metrics and hemodynamics in the hairless
mouse, Microvasc. Res. 43(1), 46–59 (1992)

19 / 51



Different scalings of the Navier–Stokes equations

Consider two different scalings where characteristic time is 1
second and the characteristic velocity is about 0.5 × 10−3 m/sec.

• The characteristic length is 10−3 m;
the characteristic diameter is 10−4 m (ε = 0.1);
change of space variable X = 10−3x;
change of velocity v = 10−3V;
change of pressure p = 103P ;
the dynamic viscosity is about 4 × 10−3 Pa sec;
the density is 103 kg/m3.

The Navier-Stokes equation in new variables

∂V
∂t

− 4∆XV + 0.5(V, ∇X)V + ∇XP = 0, ∇ · V = 0.
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Different scalings of the Navier–Stokes equations

• The characteristic length is 10−2 m;
the characteristic diameter is 10−3 m (ε = 0.1);
change of space variable X = 10−2x;
change of velocity v = 10−4V;
change of pressure p = 102P ;
the dynamic viscosity is about 4 × 10−3 Pa sec;
the density is 103 kg/m3.

The Navier-Stokes equation in new variables

102 ∂V
∂t

− 4∆XV + 0.5(V, ∇X)V + ∇XP = 0, ∇ · V = 0.
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Formulation of the problem

Let boundary value g ∈ C [ J+1
2 ]+1(0, 2π; W 3/2,2(∂Bε)) and

F̃ j(t) =
∫
γj

ε

g · n dS ≡ εn−1F j(t), j = N1 + 1, . . . , N, (3)

where n is the unit outward normal vector to γj
ε .

Compatibility condition for the flow rates F j(t):

J∑
j=1

F j(t) = 0 ∀t ∈ [0, 2π]. (4)
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Formulation of the problem
Let g ∈ C [ J+1

2 ]+1(0, 2π; W 2,2(Bε)) be the divergence free time-
periodic extension of the boundary function g satisfying for all t ∈
[0, 2π] the following asymptotic estimates

sup
x∈Bε

|g(x, t)| ≤ c, ∥∇g∥L2(Bε) ≤ cε
n−3

2 ∀t∈ [0, 2π],

∥gt∥L2(Bε) ≤ cε
n−1

2 , ∥∇2g∥L2(Bε) ≤ cε
n−5

2 ∀t∈ [0, 2π].
(5)

where the constant c is independent of ε.
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Formulation of the problem
We consider the following variations problem: to find a vector-field
v = u + g with div u = 0, u ∈ L∞

per(0, 2π; W̊ 1,2(Bε) ∩ W 2,2(Bε)),
ut ∈ L2

per(0, 2π; L2(Bε)) satisfying the integral identity

∫
Bε

(
1
εβ

ut ·η + ν∇u : ∇η −
(
(u + g) ·∇

)
η · u − (u ·∇)η ·g

)
dx

=
∫

Bε

f · η dx,

(6)

for every divergence free vector field η ∈ W̊ 1,2(Bε). Here g is an
arbitrary extension satisfying (5) and f is an arbitrary function such
that f ∈ L2(0, 2π; L2(Bε)).
Denote

A1(t) = ∥f( · , t)∥2
L2(Bε). (7)
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Solvability of the problem
Theorem

Let Bε ⊂ R2, ∂Bε ∈ C2. Suppose that the extended function g ∈
C [ J+1

2 ]+1(0, 2π; W 2,2(Bε)) satisfies the conditions (3), (4), (5), and
f ∈ L2(0, 2π; L2(Bε)). Then for sufficiently small ε, the variational
problem (6) admits a solution u satisfying the estimates

sup
t∈[0,2π]

∥u( · , t)∥2
L2(Bε) + εβ

2π∫
0

∫
Bε

|∇u(x, t)|2dx dt ≤ cε2+β

2π∫
0

A1(t) dt,

c sup
t∈[0,2π]

∥∇u( · , t)∥2
L2(Bε) +

2π∫
0

∫
Bε

|ut(x, t)|2 dx dt

+εβ

2π∫
0

∫
Bε

|∇2u(x, t)|2 dx dt ≤ cεβ

2π∫
0

A1(t) dt

with constants independent of ε.
25 / 51



Asymptotic expansion (proposed by G. Panasenko and K.
Pileckas, Nonlinear Analysis TMA 2015 )

Main steps:
• First, we solve the time-periodic problem on the graph and find

the macroscopic pressure.
• At the nodes, it satisfies the Kirchhoff-type junction conditions.
• We multiply the Poiseuille type velocity and pressure in every

cylinder Π(e)
ε by cut-off function ζ equal to one in the middle

part of the cylinder and vanishing in some O(ε) - neighbourhood
of the nodes.

• We construct boundary layer correctors, which compensate the
residuals which we get in the previous step.
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Asymptotic expansion
The asymptotic expansion of the velocity is constructed in the form

v(J)(x, t) =
M∑

i=1
ζ
(x

(ei)
n

3rε

)
ζ
( |ei| − x

(ei)
n

3rε

) J∑
j=0

εjV(ei)
j (y(ei)′

, t)

+
N∑

l=1

(
1 − ζ

( |x − Ol|
|e|min

)) J∑
j=−1

εjV[BLOl]
j (y, t),

where
• y = x(e)

ε
;

• ζ(τ) =
{

0, τ ≤ 1
3

1, τ ≥ 2
3

;

• |e|min is the minimal length of the edges;
• r = 3 max{diam σ1, . . . , diam σM} + 1;
• V(ei)

j (y(ei)′
, t) - the Poiseuille type velocities;

• V[BLOl]
j (y, t) - the boundary layer terms.
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Asymptotic expansion

v(J)(x, t) =
M∑

i=1
ζ
(x

(ei)
n

3rε

)
ζ
( |ei| − x

(ei)
n

3rε

) J∑
j=0

εjV(ei)
j (y(ei)′

, t)

+
N∑

l=1

(
1 − ζ

( |x − Ol|
|e|min

)) J∑
j=−1

εjV[BLOl]
j (y, t),
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Asymptotic expansion

The asymptotic expansion of the pressure has the similar form:

p(J)(x, t) =
M∑

i=1
ζ
(x

(ei)
n

3rε

)
ζ
( |ei| − x

(ei)
n

3rε

) J∑
j=0

εj−2(− s
(ei)
j (t)x(ei)

n + a
(ei)
j (t)

)
+

N∑
l=1

(
1 − ζ

( |x − Ol|
|e|min

)) J∑
j=−1

εj−1P
[BLOl]
j (y, t).
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Asymptotic expansion: problem on the graph

Find a function p0 ∈ L2
per(0, 2π; W 1,2(B)) such that equations

− ∂

∂x
(e)
n

(
L(e) ∂p0

∂x
(e)
n

(x(e)
n , t)

)
= 0, x(e)

n ∈ (0, |e|), ∀e = ej , j = 1, . . . , M,

−
∑

e:Ol∈e

(
L(e) ∂p0

∂x
(e)
n

)
(0, t) = 0, l = 1, . . . , N1,

−
(
L(e) ∂p0

∂x
(e)
n

)
(0, t) = Ψl(t), l = N1 +1, . . . , N,

hold. Here Ψl(t) =
∫
γl

gl ·n dS, p
(e)
0 (x(e)

n , t) = −s
(e)
0 (t)x(e)

n +a
(e)
0 (t).

Operator L(e) relates the pressure slope S and the flux H in an
infinite cylindrical pipe with section σ(e).
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Asymptotic expansion: problem on the graph



− ∂

∂x
(e)
n

(
L(e) ∂p0

∂x
(e)
n

(x(e)
n , t)

)
= 0, x(e)

n ∈ (0, |e|), ∀e = ej , j = 1, . . . , M,

−
∑

e:Ol∈e

(
L(e) ∂p0

∂x
(e)
n

)
(0, t) = 0, l = 1, . . . , N1,

−
(
L(e) ∂p0

∂x
(e)
n

)
(0, t) = Ψl(t), l = N1 +1, . . . , N,

O4 O1

O2

O5

O6

O3 O7

O8

e1

e2

e3
e4

e5
e6

e7
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Asymptotic expansion: operator L(e)

In order to find the operator L(e), we consider the following pe-
riodic in time boundary value problem for the heat equation: for
given S ∈ L2

per(0, 2π) find V ∈ L2
per(0, 2π; W̊ 1,2(σ(e))) with ∂V

∂t
∈

L2
per(0, 2π; L2(σ(e))) such that
∂V
∂t

(y(e)′
, t) − ν∆′

y(e)′ V(y(e)′
, t) = S(t), y(e)′ ∈ σ(e), t > 0,

V(y(e)′
, t)|∂σ(e) = 0, V(y(e)′

, t) = V(y(e)′
, t + 2π)

and denote

L(e)S(t) =
∫

σ(e)

V(y(e)′
, t) dy(e)′ = H(t).

L(e) is bounded linear operator acting from L2
per(0, 2π) to W 1,2

per(0, 2π).
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Asymptotic expansion: boundary layer terms

The boundary layer terms (V[BLOl]
0 , P

[BLOl]
0 ) are defined as a solu-

tion of the periodic in time Stokes problem in the unbounded domain
Ωl:

∂

∂t
V[BLOl]

0 − ν∆yV[BLOl]
0 + ∇yP

[BLOl]
0

=
∑

e:Ol∈e

(
ζ
(y

(e)
n

3r

) ∂

∂t
V

(e)
0 (y(e)′

, t) + ν
∂2

∂y
(e)2
n

(
ζ
(y

(e)
n

3r

))
V(e)

0 (y(e)′
, t)

+ ∇y

(
ζ
(y

(e)
n

3r

)
y(e)

n

)
s

(e)
0 (t) − ∇y

(
ζ
(y

(e)
n

3r

))
â

(e)
1 (t)

)
, y ∈ Ωl,

divy V[BLOl]
0 = −

∑
e:Ol∈e

∂

∂y
(e)
n

ζ
(y

(e)
n

3r

)
V

(e)
0,n (y(e)′

, t), y ∈ Ωl,

V[BLOl]
0 |∂Ωl

= 0, V[BLOl]
0 (y, t) = V[BLOl]

0 (y, t + 2π).
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Justification of the asymptotic

Represent v, p as the sums v = u + u(J) = u + v(J) + w(J),
p = q + p(J), where w(J) ∈ L2

per(0, 2π; W 2,2(Bε) ∩ W̊ 1,2(Bε)) and
div w(J) = −h(j) = −div v(J). Then u(J) ∈ L2

per(0, 2π; W 2,2(Bε)),
u(J)

t ∈ L2
per(0, 2π; L2(Bε)). The difference u = v − u(J) is diver-

gence free, satisfies the periodicity condition, the boundary condition
u(x, t)|∂Bε = 0 and the integral identity∫

Bε

( 1
εβ

ut · η + ν∇u : ∇η − ((u + u(J)) · ∇)η · u − (u · ∇)η · u(J)
)

dx

=
∫

Bε

f (J)
1 · η dx

for every η ∈ H(Bε).
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Justification of the asymptotic

Theorem
Let n = 3. The following estimates

sup
t∈[0, 2π]

∥u( · , t)∥2
L2(Bε) + εβ

2π∫
0

∫
Bε

|∇u|2 dx dt ≤ cε2J−2+β,

sup
t∈[0,2π]

∥∇u( · , t)∥2
L2(Bε) +

2π∫
0

∫
Bε

|ut|2 dx dt + εβ

2π∫
0

∫
Bε

|∇2u|2 dx dt

≤ cε2J−4+β

hold.
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Justification of the asymptotic
Theorem
Moreover, there exists the pressure function q ∈ L2

per(0, 2π; L2(Bε))

such that
∫

Bε

q(x, t) dx = 0 and∫
Bε

( 1
εβ

ut ·η + ν∇u : ∇η − ((u + u(J)) ·∇)η ·u − (u ·∇)η ·u(J)
)

dx

=
∫

Bε

q div η dx +
∫

Bε

f (J)
1 · η dx, ∀ηηη ∈ W̊ 1,2(Bε).

If J ≥ 2, then the following estimate

2π∫
0

∫
Bε

|q|2 dx dt ≤ cε2J−4−β

holds.
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Steady-state Navier–Stokes equations with Bernoulli
pressure

The steady-state Navier–Stokes equations in a tube structure Bε

−ν∆v + (v · ∇)v + ∇p = 0, x ∈ Bε,

div v = 0, x ∈ Bε,

v = 0, x ∈ ∂Bε\ ∪N
j=N1+1 γj

ε ,

vτ = 0, x ∈ γj
ε ,

−ν∂n(v · n) +
(
p + 1

2 |v|2
)

= cj/ε2, x ∈ γj
ε , j = N1 + 1, . . . , N,

where ν is a positive constant, n is the unit normal vector to γj
ε ,

vτ = v − (v · n)n is the tangential component of the vector v,
∂nv = ∇v · n is the normal derivative of v, cj are some constants.
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Definition of a tube structure

Suppose that it is a connected set and that the boundary ∂Bε of
Bε is C2-smooth everywhere except for the parts of the boundary
which are the bases γj

ε = {x(e)′ ∈ σOj , x
(e)
n = 0} of cylinders Π(e)

ε .
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Steady-state Navier–Stokes equations with Bernoulli
pressure

We can rewrite steady-state Navier-Stokes equation with the right-
hand side f ∈ L2(Bε) in the following form

−ν∆v+(v ·∇)v−v · (∇v)t +∇Φ = f , x ∈ Bε,

div v = 0, x ∈ Bε,

v = 0, x ∈ ∂Bε\∪N
j=N1+1 γj

ε ,

vτ = 0, x ∈ γj
ε ,

Φ = pj , x ∈ γj
ε , j = N1 +1, N,

(8)

where Φ = (p + 1
2 |v|2) is the Bernoulli pressure, pj stand for the

constants cj/ε2.
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Steady-state Navier-Stokes equations with Bernoulli
pressure

Let Γ = ∂Bε \ ∪N
j=N1+1γj

ε be the lateral surface of the domain Bε,
then
Ŵ 1,2

γ (Bε) = {η ∈ W 1,2(Bε) : η|Γ = 0, ητ |
γj

ε
= 0, j = N1+1, . . . , N}.

Definition
A weak solution of (8) problem is a vector field v ∈ Ĵ1,2

γ (Bε) =
{η ∈ Ŵ 1,2

γ (Bε) : div η = 0}, satisfying the integral identity

ν

∫
Bε

∇v : ∇η dx +
∫

Bε

(v · ∇)v · η dx −
∫

Bε

(η · ∇)v · v dx

= −
N∑

j=N1+1
pj

∫
γj

ε

η · n dx′ +
∫

Bε

f · η dx

for every η ∈ Ĵ1,2
γ (Bε).
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Steady-state Navier-Stokes equations

Introduce p∗
j = pj − pN , j = N1, . . . , N . We get an equivalent

weak formulation: find a vector field v ∈ Ĵ1,2
γ (Bε) satisfying the

integral identity

ν

∫
Bε

∇v : ∇η dx +
∫

Bε

(v · ∇)v · η dx −
∫

Bε

(η · ∇)v · v dx

= −
N−1∑

j=N1+1
p∗

j

∫
γj

ε

η · n dx′ +
∫

Bε

f · η dx

(9)

for every η ∈ Ĵ1,2
γ (Bε).
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Existence of the weak solution

Theorem

For arbitrary f ∈ L2(Bε) and p∗
j ∈ R, j = N1+1, . . . , N −1 problem

(8) admits at least one weak solution v ∈ Ĵ1,2
γ (Bε). There holds

the estimate

∥∇v∥L2(Bε) ≤ c
(
εn/2

N−1∑
j=N1+1

|p∗
j | + ε∥f∥L2(Bε)

)
with the constant c independent of ε.
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Asymptotic expansion of the solution

v(J)(x) =
∑

Ol, l=N1+1,...,N ; e=OlOil

ζ
(x

(e)
n

3rε

)
V[e,J ]

(x(e)′

ε

)

+
∑

e=OαOβ ; α,β≤N1

ζ
(x

(e)
n

3rε

)
ζ
( |e| − x

(e)
n

3rε

)
V[e,J ]

(x(e)′

ε

)

+
N∑

l=1

(
1 − ζ

( |x − Ol|
|e|min

))
V[BLOl,J ]

(x − Ol

ε

)
,
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Asymptotic expansion of the solution
The asymptotic expansion of the pressure for every half-cylinder
Π(e)

ε , xn < |e|/2, corresponding to the edge e = OlOil
, l = N1 +

1, . . . , N , (Ol is the origin of the local coordinate system) is sought
in the form:

p(J)(x) = −s(e)x(e)
n + a(e) + 1

ε

(
1 − ζ

( |x − Ol|
|e|min

))
P [BLOl,J ]

(x − Ol

ε

)
,

and on every half-bundle HBOl
, l = 1, . . . , N1, ( Ol is the origin of

the local coordinate system) we define:

p(J)(x) =
∑

e⊂Bl

ζ
(x

(e)
n

3rε

)(
− s(e)x(e)

n + a(e) − a(es))+ a(es)

+1
ε

(
1 − ζ

( |x − Ol|
|e|min

))
P [BLOl,J ]

(x − Ol

ε

)
.
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Asymptotic expansion of the solution (the base case)

Solve the conductivity problem on the graph for the function p0:

−κe
∂2p

(e)
0

∂x
(e)
n

2 (x(e)
n ) = 0, x(e)

n ∈ (0, |e|),

−
∑

e:Ol∈e

κe
∂p

(e)
0

∂x
(e)
n

(0) = 0, l = 1, . . . , N1,

p
(e)
0 (0) = cl, l = N1 + 1, . . . , N,

p
(e)
0 (0) = p

(es)
0 (0), ∀e ⊂ Bl.
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Asymptotic expansion of the solution (the base case)

Solving the above conductivity problem, we define for every edge e

the constants s
(e)
0 and a

(e)
0 such that

p
(e)
0 (x(e)) = −s

(e)
0 x(e)

n + a
(e)
0

and the velocity V
(e)

0 (y(e)′) is the solution of the Dirichlet problem−ν∆(y(e)′)V
(e)

0 (y(e)′) = 1, y(e)′ ∈ σ(e);

V
(e)

0 (y(e)′) = 0, y(e)′ ∈ ∂σ(e),

and
κe =

∫
σ(e)

V
(e)

0 (y(e)′)dy(e)′
.
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Asymptotic expansion of the solution (the base case)

For l = 1, . . . , N1 the boundary layer problem for
(V[BLOl]

0 (y), P
[BLOl]
0 (y)) is:

−ν∆yV[BLOl]
0 + ∇yP

[BLOl]
0 = f [REGOl]

0 + f [BLOl]
0 , y ∈ Ωl,

divyV[BLOl]
0 = h

[REGOl]
0 , y ∈ Ωl,

V[BLOl]
0 = 0, y ∈ ∂Ωl.
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Error estimate

Set ṽ(J) = v(J) + w(J), where w(J) ∈ W̊ 1,2(Bε) is a vector field
such that div w(J) = −h(j).

Theorem
The following error estimate

∥v − ṽ(J)∥W 1,2(Bε) = O(εJ+(n−1)/2)

holds.
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Conclusion

• The results obtained for the time-periodic Stokes system was
generalized by K. Kaulakytė and K. Pileckas.

• Constructed asymptotic expansion for the Navier-Stokes equa-
tions let create hybrid dimension models. These models reduce
the numerical simulation cost and may be used to create a sim-
plified blood circulation model for small and very small vessels.

• Obtained results may be developed for more complicated cases,
time-periodic case with given Bernoulli pressure etc.
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