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Sturm-Liouville Problems with Two-Point NBC

− u′′ = λu, t ∈ (0, 1), (1)

with Dirichlet BC or the natural BC:

(Case d) u(0) = 0, (2a)
(Case n) u′(0) = 0, (2b)

and two–point NBC: 1

(Case 1) u(1) = γu(ξ), (3a)
(Case 2) u′(1) = γu′(ξ), (3b)
(Case 3) u(1) = γu′(ξ), (3c)
(Case 4) u′(1) = γu(ξ), (3d)
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The general solution of this equation −u′′ = λu, t ∈ (0, 1) is

u(t) = C1 cos(πqt) + C2
sin(πqt)

πq
, λ = λ(q) = (πq)2. (4)

Figure: Bijective map: λ = (πq)2 between Cλ and Cq; –BP, –RP.
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Uj−1 − 2Uj + Uj+1

h2 + λUj = 0, j = 1, n − 1,U0 = 0, (5)

U0 = 0,
(
u(0) = 0

)
(6a)

U0 = U1,
(
u′(0) = 0

)
. (6b)

Un= γUm,
(
u(1) = γu(ξ)

)
(7a)

Un−Un−1
h = γ

Um+1−Um−1
2h ,

(
u′(1) = γu′(ξ)

)
, (7b)

Un= γ
Um+1−Um−1

2h ,
(
u(1) = γu′(ξ)

)
, (7c)

Un−Un−1
h = γUm,

(
u′(1) = γu(ξ)

)
. (7d)

and h = 1/n, ξ = mh = m/n. The truncation error is O(h).
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For dSLP (5)–(7a,c) we have meromorphic functions

U0 = 0 and Un = γUm or Un = γ
Um+1−Um−1

2h

γc(q) :=
sin(πq)
sin(πqξ)

, 0 < m < n (8a)

γc(q) :=
sin(πq)
cos(πqξ)

· h
sin(πqh)

, 0 ≤ m < n. (8b)

U0 = U1 and Un = γUm or Un = γ
Um+1−Um−1

2h

γc(q) :=
cos(πq(1 − h/2))
cos(πq(ξ − h/2))

, 0 < m < n (9a)

γc(q) := −cos(πq(1 − h/2))
sin(πq(ξ − h/2))

· h
sin(πqh)

, 0 ≤ m < n, (9b)
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Discrete Sturm-Liouville Problems with u(0) = 0 and u′(0) = 0.

Uj−1 − 2Uj + Uj+1

h2 + λUj =(δ2U)j + λUj = 0, (10)

(δ2U)j :=
(δU)j+1/2 − (δU)j−1/2

hj+1/2
(δU)j+1/2 :=

Uj+1 − Uj

h

(δU)−1/2 = 0,
(
u′(0) = 0

)
(11a)

(δU)n+1/2 = 0,
(
u′(1) = 0

)
. (11b)

j = 1, n − 1 and h = 1/n, ξ = mh = m/n. The conditions
u′(0) = 0 and u′(1) = 0 truncation error is O(h2).
Operator (δ2U) can be extended to point t0 and tn

(δ2U)0 :=
(δU)1/2 − (δU)−1/2

h/2
=

(δU)1/2

h/2
= −λU0 (12a)

(δ2U)n :=
(δU)n+1/2 − (δU)n−1/2

h/2
=

(δU)n−1/2

h/2
= −λUn (12b)
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−
Uj+1 − 2Uj + Uj−1

h2 = λUj or (13)

Uj+1 − 2zUj + Uj−1 = 0, z = 1 − λh2/2 (14)

and the general solution of this discrete equation have
expression 2

Uj = C1Tj(z) + C2T̃j−1(z), j ∈ Z (15)

where

Tj(z) =
(z +

√
z2 − 1)j + (z −

√
z2 − 1)j

2
, j ∈ Z,

are the Chebyshev polynomial of the first kind of degree j in z,

T̃j(z) =
(z +

√
z2 − 1)j+1 − (z −

√
z2 − 1)j+1

2
√

z2 − 1
, j ∈ Z,

are the Chebyshev polynomial of the second kind of degree j in
z.

21989 A.A. Samarskii and E.S. Nikolaev ”Numerical Methods for Grid
Equations”
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Uj+1−(ω+ω−1)Uj+Uj−1 = 0, where z = z(ω) :=
ω + ω−1

2
(16)

and the general solution of this discrete equation is

Uj = C1Wj(ω) + C2W̃j(ω), j ∈ Z, (17)

where
Wj(ω) =

ωj + ω−j

2
, W̃j(ω) =

ωj − ω−j

ω − ω−1 , j ∈ Z.

The conformal map

ωh : Cq → Cω∗ , ω = ωh(q) := eıπqh,

is bijection. Using maps λh and ωh we construct the bijection
between complex plane Cλ and domain Cq:

λ = λh(q) :=
2
h2

(
1 − eıπqh + e−ıπqh

2

)
=

4
h2 sin2 πqh

2
. (18)
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The equation (10) can be rewritten in form

Uj+1 − 2 cos(πqh)Uj + Uj−1 = 0, q ∈ Ch
q, (19)

and the general solution of this discrete equation is

Uj = C1 cos(πqtj) + C2
sin(πqtj)
sin(πqh)

, where tj = jh, j ∈ Z. (20)

Let us approximate natural condition u′(0) = 0 as 3

(δU)1/2 = −h1/2λU0 (21)

and is natural condition for equation (19)

31989 A.A. Samarskii and E.S. Nikolaev ”Numerical Methods for Grid
Equations”
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Uj+1 − 2 cos(πqh)Uj + Uj−1 = 0, λ = 4
h2 sin

2(πqh
2 )

h

Figure: Bijective mapping λ = 4
h2 sin

2(πqh
2 ) between Cq

h and Cλ.
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We define grid operators:

δ+ : H(ωh) → H(ωh ∪ {0}), (δ+U)j :=
Uj+1 − cos(πqh)Uj

h
,

δ− : H(ωh) → H(ωh ∪ {n}), (δ−U)j :=
cos(πqh)Uj − Uj−1

h
.

On the grid ωh we have

(δ+U)j = (δ−U)j =
(
(δ+U)j+(δ−U)j

)
/2 =

Uj+1 − Uj−1

2h
=: (δ̄U)j.

If (δ̄U)0 := (δ+U)0, (δ̄U)n := (δ−U)n, then we have natural
approximation (δ̄U)j of derivative u′(tj) on the grid ωh.
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− δ2U = λU, t ∈ ωh, (22)

with Dirichlet BC or the natural BC:

(Case d) U0 =0, (23a)
(Case n) (δ̄U)0 = 0, (23b)

and two–point NBC:

(Case 1) Un = γUm, (24a)
(Case 2) (δ̄U)n = γ(δ̄U)m, (24b)
(Case 3) Un = γ(δ̄U)m, (24c)
(Case 4) (δ̄U)n = γUm, (24d)

where 0 ≤ m < n, γ ∈ R, h = 1/n, ξ = mh = m/n. The general
solution of discrete equation (22) is

Uj = C1 cos(πqtj) + C2
sin(πqtj)
sin(πqh)

, where tj = jh, j ∈ Z. (25)
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For dSLP (22)–(24) Constant Eigenvalues are equal to
λj = λh(cj), where

cj = Nj, j ∈ Jξ := {j : j = 1,K − 1}, (d1)

cj = N(j − 1/2), j ∈ Jξ := {j : j = 1,κK}, (d2–4,n1,n3–4)

cj = Nj, j ∈ Jξ := {j : j = 0,K}, (n2)

and

nce = K − 1, lj = Nj, kj = Mj, (d1)
nce = κK, lj = Nj − (N − 1)/2, kj = Mj − (M − 1)/2,

(d2,n1)

nce = K + 1, lj = Nj, kj = Mj. (n2)
nce = κK, lj = N(j − 1/2), kj = Mj − (M − 1)/2, (d3)
nce = κK, lj = Nj − (N − 1)/2, kj = M(j − 1/2), (d4)
nce = κK, lj = Nj − (N − 1)/2, kj = Mj, (n3)
nce = κK, lj = Nj − (N/2 − 1), kj = Mj − (M − 1)/2, (n4)
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For dSLP (22)–(24) we have meromorphic functions

γc(q) :=
Zh(q)
Ph
ξ(q)

=
sin(πq)
sin(πqξ)

, 0 < m < n, (d1,n2)

γc(q) :=
Zh(q)
Ph
ξ(q)

=
cos(πq)
cos(πqξ)

, 0 ≤ m < n. (d2,n1)

γc(q) :=
Zh(q)
Ph
ξ(q)

=
sin(πq)
cos(πqξ)

· h
sin(πqh)

, 0 ≤ m < n, (d3)

γc(q) :=
Zh(q)
Ph
ξ(q)

=
cos(πq)
sin(πqξ)

· sin(πqh)
h

, 0 < m < n, (d4)

γc(q) :=
Zh(q)
Ph
ξ(q)

= − cos(πq)
sin(πqξ)

· h
sin(πqh)

, 0 < m < n, (n3)

γc(q) :=
Zh(q)
Ph
ξ(q)

= − sin(πq)
cos(πqξ)

· sin(πqh)
h

, 0 ≤ m < n, (n4)
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Figure: Real CF for various ξ in Case d1, n2.
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ξ = 1
4 ξ = 2

4 ξ = 3
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Figure: Spectrum Curves for various ξ values in Case d1, n2.
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ξ = 3
4 ξ = 5
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9

Figure: Real CF for various ξ in Case d2, n1.
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ξ = 3
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Figure: Specrum Curves for various ξ in Case d2, n1.
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ξ = 1
6 ξ = 2
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Figure: Real CF for various ξ in Case d3.

K. Bingelė, April 29, 2025 Natural Approximation of a Derivative in Boundary Condition



Sturm-Liouville Problems with Two-Point NBC

ξ = 1
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Figure: Spectrum Curves for various ξ values in Case d3.
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ξ = 36
63 ξ = 4

7 ξ = 37
63

ξ = 300
400 ξ = 301

400 ξ = 302
400

Figure: Spectrum Curves for various ξ values in Case d3.
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ξ = 2
6 ξ = 4

5 ξ = 8
10

Figure: Spectrum Curves for various ξ values in Case d4.
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ξ = 1
3 ξ = 2

3 ξ = 5
10

Figure: Spectrum Curves for various ξ values in Case n3.
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ξ = 1
3 ξ = 3

4 ξ = 4
5

Figure: Spectrum Curves for various ξ values in Case n4.
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In case d1–2, n1–2 if n − m = 1 we have only real
eigenvalues points.
In cases d1,n2 the eigenvalue λ = 0 exist only if γ = 1

ξ and
λ = 4n2 exist only if γ = (−1)n−m 1

ξ .
In cases d2,n1 the eigenvalue λ = 0 exist only if γ = 1 and
λ = 4n2 exist only if γ = (−1)n−m.
In cases d3 the eigenvalue λ = 0 exist only if γ = 1 and
λ = 4n2 exist only if γ = (−1)n−m+1.
In case d4 the eigenvalue λ = 0 exist only if γ = 1

ξ and
λ = 4n2 exist only if γ = (−1)n−m+1 1

ξ .

In case n3 the eigenvalues λ = 0 and λ = 4n2 do not exist.
In case n4 the eigenvalues λ = 0 and λ = 4n2 exist if γ = 0.
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