Using ML for recommendations in various domains Dr. Konstantinos Diamantaras Vice Rector Department of Information and Electronic Engineering

International Hellenic University

Recommendation Systems

Recommendation systems applications

Basic concepts

- User
- Item
- Transaction / record
- Ratings
 - explicit ratings
 - ➢ implicit ratings

Recommendation System Problems

Κατηγορίες Συστημάτων Συστάσεων

Vilnius Gediminas echnical University

Hybrid Recommender System

Context-Aware RS

User preferences may vary depending on :

- Time
- Day
- Season
- Mood
- Location

Session-Based RS (SBRS)

• The evolution of a user's preferences within a set of transactions

 $S = \{I_{t1}, I_{t2}, ..., I_{tk}, ..., I_{tn}\} \longrightarrow I_{tn+1}$

- Anonymous website or online store visitors
- Three central groups of algorithms in relation to their output for recommendation:

next (best) item recommendation

next (best) session/basket recommendation

next (best) action/event recommendation

Recommendation systems for retail and services

Konstantinos Diamantaras - 21 May 2024

12

Flexible Recommender Systems on Big Data

https://www.fres-project.gr/

A flexible recommender system

14

Basics: Embeddings

- Vector representation of items and/or users. Similar items → close embeddings in vector space
- Motivated by Natural Language representations
- Example: "A brown dog jumped over the fence"

15

Konstantinos Diamantaras - 21 May 2024

VILNIUS TECH Vilnius Gediminas Technical University

Word2Vec and Doc2Vec

- <u>Word2Vec</u>: encoding (representing) words with vectors such that semantically similar words have similar representations
- <u>Doc2Vec</u>: representing a sentence or a document with a single vector

Konstantinos Diamantaras - 21 May 2024

 Doc2Vec can be used in RS when textual information is known about the item. This is essentially "content based" filtering

Item2Vec training

- What if, instead of words we have items and instead of sentences we have baskets?
- \rightarrow Item2Vec = vector representation of items. Items most commonly purchased together have similar vectors

Recommend items with Item2Vec

Evaluation Criteria

- MRR: Average 1/r, where r is the order of the selected item in an ordered recommendation list. If the user does not choose any item then r=∞
- **F1@k:** F1 score when recommending k items
- Click Through Rate: Number of recommended items previewed by the user over the number of item impressions
- **Conversion Rate:** Number of items added to cart by user divided by number of item impressions

Physical retail shop

- Requirements:
 - ✓ Physical shop with loyalty card per customer
 - ✓ We know the purchase history of the client

Physical retail store: Recurrent Neural Networks

22

Vilnius Gediminas Technical University

Physical retail store: Item2Vec

E-shop

• Requirements

- ✓ Session-based recommendations: sequence of clicks
- ✓ No prior info about the user

E-shop: Recurrent NN

E-shop: Item2Vec

Retail and E-shop results

	Next-Item Recommendation (e-Commerce Site)		Next-Basket Recommendation Task (Almapet)		
Method	MRR/last	MRR/all	F1@2/7	F1@2/all *	
Doc2Vec	0.101	0.062	0.154	0.114	
Doc2Vec + reranking	0.123	0.079	0.143	0.105	
Item2Vec	0.087	0.079	0.221	0.167	
Item2Vec + reranking	0.111	0.093	0.182	0.148 0.167	
Fusion method	0.112	0.078	0.216		
Fusion method + reranking	0.126	0.089	0.184	0.151	
LSTM (random init)	-	0.265	0.208	0.205	
LSTM (Doc2Vec init)	-	0.268	0.218	0.219	

Graph-based method: Hierarchical sequence popularity (HSP)

- Nodes:
 - Session
 - Items
- Relationships:
 - ItemInSession
 - Next

HSP

E-shop - Number of clicks

Algorithms from which we obtained clicks

E-shop – click through rate

Web service

- Requirements:
 - ✓ Know previous user history
 - ✓No demographics
 - ✓ Know basic features of the items
- Example application: Ring Tone service
 - ✓ Song title, Artist and Genre

Ring Tones: Graph-Based Recommendations

- Node2vec method
- Create random 2nd order paths from each node
- Path input in word2vec algorithm (skip-gram)
- Objects with similar characteristics acquire similar representations through this process.
- The final recommendation is obtained by comparing the final numerical representations of each node based on some distance metric, usually cosine similarity.

Ring Tones: Graph-Based Recommendations

Nodes: Songs / Users / Artists / Genre

Original Dataset: 570.000 UserPack samples – The last interaction with each user's item is used as a test set (91,000 samples)

Results:

MRR	Length of Recommendation	Empty results (total 91161)
0.017	1k	19080
0.020	2k	7652
0.022	3k	4015
0.026	5k	1429
0.030	10k	183

Song

User

Genre

Artist

Ring tones recommendation performance

% Fres Click Through Rate

Αριθμός προεπισκόπησης τραγουδιών (από τον χρήστη) τα οποία προτάθηκαν από το Fres / Αριθμός εμφανίσεων προτάσεων Fres (Impressions)

Conclusions

- LSTMs outperform embedding approaches in session-based next-item recommendations, requiring less tuning and effectively modeling e-commerce browsing behaviors.
- LSTMs performed slightly less effectively than Item2Vec in predicting the last basket, although they did surpass Word2Vec.
- Merging different recommendation approaches has yielded mixed results; custom, pluggable systems that dynamically select the best method could be more effective.
- Category-based re-ranking might help when recommender systems underperform.
- Efficiency and scalability, particularly with incremental training, remain challenging in large-scale applications and are subjects for future research.
- A key functional requirement for session-based recommendation systems (SBRS) in e-commerce is to integrate management-imposed business rules.

Recommending educational material

Konstantinos Diamantaras - 21 May 2024

37

What is an Education Recommendation system?

- An education recommendation system is a software tool designed to suggest educational content, such as courses, materials, videos, and problems, to learners based on various criteria.
- Data: user's past behavior, performance, preferences, and sometimes demographic information
- Primary objective: to enhance learning outcomes by making the educational experience more relevant and effective.

Education RS vs. E-commerce RS

	Education RS	E-commerce RS
Objective	enhance learning outcomes by identifying and addressing knowledge gaps	maximizing sales and customer satisfaction
Data	test scores, quiz results, assignment grades	browsing history, purchase history, item ratings, user demographics
Impact	long-term implications for a learner's educational trajectory and knowledge acquisition	short-term, influencing immediate purchasing decisions and customer retention strategies
Adaptivity	Must adapt to the changing knowledge state of the learner	focus is less on user change over time and more on maximizing immediate sales opportunities

Introducing DK-PRACTICE

- "DK-PRACTICE" (Dynamic Knowledge Prediction and Educational Content Recommendation System) is an intelligent online platform that uses machine learning to offer personalized learning recommendations.
 - Students begin with a short, adaptive assessment on key concepts in a specific knowledge domain.
 - The system selects questions dynamically based on the accuracy of previous answers.

Knowledge tracing

• KT: The method used to model and track the knowledge state of learners over time as they interact with instructional content. Plays a critical role in adaptive learning systems and intelligent tutoring systems.

/ilnius Gediminas Fechnical University

DK-PRACTICE

Personalization

- Post-assessment, DK-PRACTICE recommends tailored learning materials to address knowledge gaps.
- Recommendations and question selections are powered by machine learning models trained on anonymized real-world data.

Self-Assessment and Monitoring

- Students can take pre- and post-teaching tests to monitor learning progress.
- Detailed reports and visualizations of progress are provided after each test.
- Benefits
 - Promotes adaptive learning tailored to individual student needs.
 - Provides instructors with valuable insights into student knowledge levels.

Recommending jobs

Konstantinos Diamantaras - 21 May 2024

43

Job recommendations

Job linking

 Intelligent Platform for Job Analysis And Skill Matching

ESCO taxonomy

• https://esco.ec.europa.eu/en

Al pipeline extracting entities

Al pipeline extracting entities

Entity Linker

Our contribution

- Provide a framework to analyze a job vacancy regarding the occupations, skills, and qualification information it contains
- Conducted a series of experiments in entity recognition for occupations, skills and qualifications based on the dataset released by Green et. al.
- Evaluated the performance of various BERT-based models on the entity recognition task
- Fine-tuned two specialized sentence transformer models to match occupation titles with the ESCO taxonomy. We provide the training and evaluation sets, which are based on the Ethiopian <u>https://hahu.jobs/</u> platform
- Evaluate our methodology on the matching performance with respect to Occupations, Skills, and Qualifications.

	Entity Model	Similarity Model	MAP@1	MAP@5
Occupations	jjzha/jobbert-base-cased+CRF bert-base-cased+CRF roberta-large+CRF	all-MiniLM-L6-v2 all-MiniLM-L6-v2 all-MiniLM-L6-v2-FT	$\begin{array}{c} 0.373 \\ 0.308 \\ 0.434 \end{array}$	$\begin{array}{c} 0.231 \\ 0.196 \\ 0.347 \end{array}$
	roberta-base+CRF roberta-large+CRF roberta-base+CRF roberta-large+CRF roberta-base+CRF	all-MiniLM-L6-v2-FT all-mpnet-base-v2 all-mpnet-base-v2 all-mpnet-base-v2-FT all-mpnet-base-v2-FT	0.365 0.369 0.303 0.467 0.387	0.291 0.235 0.198 0.390 0.328
Skills	roberta-base+CRF jjzha/jobbert-base-cased+CRF deberta-base deberta-base+CRF roberta-base jjzha/jobbert-base-cased+CRF roberta-large+CRF deberta-base	all-MiniLM-L6-v2 all-MiniLM-L6-v2 all-MiniLM-L6-v2-FT all-MiniLM-L6-v2-FT all-mpnet-base-v2 all-mpnet-base-v2 all-mpnet-base-v2-FT all-mpnet-base-v2-FT	$\begin{array}{c} 0.494 \\ 0.470 \\ 0.347 \\ 0.316 \\ 0.497 \\ 0.474 \\ 0.330 \\ 0.295 \end{array}$	$\begin{array}{c} 0.491 \\ 0.468 \\ 0.362 \\ 0.331 \\ 0.494 \\ 0.466 \\ 0.345 \\ 0.312 \end{array}$
Qualifications	jjzha/jobbert-base-cased+CRF roberta-base+CRF bert-large-cased bert-large-cased+CRF bert-large-cased roberta-base+CRF jjzha/jobbert-base-cased bert-large-cased+CRF	all-MiniLM-L6-v2 all-MiniLM-L6-v2 all-MiniLM-L6-v2-FT all-MiniLM-L6-v2-FT all-mpnet-base-v2 all-mpnet-base-v2 all-mpnet-base-v2-FT all-mpnet-base-v2-FT	$\begin{array}{c} 0.630 \\ 0.618 \\ 0.582 \\ 0.567 \\ 0.640 \\ 0.623 \\ 0.576 \\ 0.554 \end{array}$	$\begin{array}{c} 0.614 \\ 0.606 \\ 0.556 \\ 0.537 \\ \textbf{0.630} \\ 0.615 \\ 0.566 \\ 0.545 \end{array}$

Demo – Entity linking

 <u>file:///C:/Users/User/OneDrive%20-</u> %20International%20Hellenic%20University/Code/ NLPOxford_matching/client/client%20(2).html

