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Time-periodic Poiseuille-type 
solution with minimally regular 

flow rate



We consider time-periodic Navier–Stokes problem

in an infinite cylinder П

We look for the solution satisfying the flux condition:

(1)

(2)



We look for the solution (u(x, t), p(x, t)) of problem in the form

By substituting (3) into (1) we obtain the following problem on the cross-section σ:  

The Poiseuille flow can be uniquely determined either prescribing the pressure drop q(t) or the 

flow-rate F(t). However, in the real life applications the pressure is unknown, and only the flow-

rate (flux) of the fluid is given. Therefore, it is necessary to prescribe the additional condition

(3)

(4)

(5)



We have to solve for U(xʹ, t) and q(t) the inverse parabolic problem, i.e., for given

F(t) to find a pair of functions (U(xʹ, t), q(t)) solving the above problem (6).

Time-periodic Navier-Stokes problem in infinite cylinder П was reduced 

to the following problem on the cross-section σ:  

The relation between q(t) and F(t) depends on the solution of the inverse problem.

The solvability of the time-periodic problem with the assumption that the flux F(t) is

from the Sobolev space W1,2(0,2π) was proved in 2005. However, in applications and

numerical computations usually data is not regular. Therefore, we study the problem (6) 

assuming only that F ∈ L2(0,2π).

(6)



Problem (6) can be reduced to the case when all the involved functions have zero mean values.

The solution

(7)

can be represented in the form

where U0(xʹ) is the solution of the following problem:and

and



Let us represent the solution (U, q) in the form

(8)

(9)



FUNCTION SPACES



PRIMITIVE FUNCTION AND ITS PROPERTIES



DEFINITION OF A WEAK SOLUTION



MAIN RESULT

This theorem is proved applying some version of Galerkin approximations.



CONSTRUCTION OF APPROXIMATE SOLUTION

Green function



CONSTRUCTION OF APPROXIMATE SOLUTION

Orthonormality

of uk(xʹ) 



CONSTRUCTION OF APPROXIMATE SOLUTION
Green function



CONSTRUCTION OF APPROXIMATE SOLUTION

SOLUTION
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A PRIORI ESTIMATES
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A PRIORI ESTIMATES
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A PRIORI ESTIMATES
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A PRIORI ESTIMATES



A PRIORI ESTIMATES

Earlier we had that

(14)

(15)



A PRIORI ESTIMATES
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EXISTENCE
The approximate solution satisfies the integral identity

(17)



EXISTENCE

(19)



EXISTENCE
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Poiseuille-type
approximations for

axisymmetric flow in a thin
tube with thin stiff elastic wall



NOTATION

since

and



NOTATION

Divergence operator for a vector-valued function

Linear elasticity operator

Divergence operator for a symmetric tensor-valued function

The gradient operator for a vector-valued function

Velocity strain tensor



RESULT OF G. PANASENKO AND R. STAVRE (2020)



RESULT OF G. PANASENKO AND R. STAVRE (2020)



MATHEMATICAL MODEL

(M)



THE VARIATIONAL FRAMEWORK OF THE PROBLEM



THE VARIATIONAL FRAMEWORK OF THE PROBLEM

In the framework presented above, the variational formulation of system (M) developed by G. Panasenko and 

R. Stavre can be expressed as follows:



MODIFIED VARIATIONAL FORMULATION FOR NUMERICAL SETUP
We will modify the boundary conditions at the ends of the tube. Instead of the periodic solution with respect to the variable

x3 we introduce some given inflow and outflow supposing the tube with elastic wall being clamped at the ends of the tube.



MODIFIED VARIATIONAL FORMULATION FOR NUMERICAL SETUP



MODIFIED VARIATIONAL FORMULATION FOR NUMERICAL SETUP



MODIFIED VARIATIONAL FORMULATION FOR NUMERICAL SETUP

(N)



MODIFIED VARIATIONAL FORMULATION FOR NUMERICAL SETUP



PIPE
g(inlet)=sin(2t)

g(outlet)=sin(2t+0.1)



PIPE
g(inlet)=sin(2t)

g(outlet)=sin(2t+0.01)



Y-SHAPED NETWORK OF VESSELS g(inlet)=sin(2t)

g(outlet)=sin(2t+0.1)



Y-SHAPED NETWORK OF VESSELS g(inlet)=sin(2t)

g(outlet)=sin(2t+0.01)



Efficient computation of blood 
velocity in the left atrial 
appendage: A practical 

perspective
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N. Karim et al., The left atrial appendage in humans: structure, physiology, and 
pathogenesis

Which geometry leads to the highest chance of thrombi 
formation and STROKE?





IMAGING. CLEANING. GEOMETRY CREATION

METHODOLOGY:

IMAGING
(CT)
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GEOMETRY MESH
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SECOND STEP
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PATIENT-SPECIFIC COMPUTER FSI SIMULATION FOR 
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SINUS RHYTHM

SIMULATIONS
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PATIENT-SPECIFIC COMPUTER FSI SIMULATION FOR 
CACTUS LEFT ATRIUM GEOMETRY
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ATRIAL 
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INLET OF LAA



PATIENT-SPECIFIC COMPUTATION OF BLOOD FLOW 
VELOCITY IN THE LA
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PATIENT-SPECIFIC COMPUTATION OF BLOOD FLOW 
VELOCITY IN THE LAA

STROKE NO STROKE

SIMULATIONS



Blood velocity 
magnitude in LA, 
when the angle 
between LA
and LAA, I – 30°, 
II – 50°, III – 70°, 
IV – 90°


