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We consider time-periodic Navier—Stokes problem

[ w,—vAu+(u-Viu+Vp = 0,
diva = 0,
Ulpnixo2r) = O,

\ u(r,0) = u(x,2m),

in an infinite cylinder IT = {x = (x1,x2.x3) : X’ = (x1,x0) € 0,x3 € R3}.

@ u - velocity of the fluid,

@ p - pressure of the fluid,

@ v - viscosity of the fluid.

ydr' = F(t), F(0)=F(2

We look for the solution satisfying the flux condition: /U( >
x,
o




We look for the solution (u(x, t), p(x, t)) of problem in the form

u(z,t)=(0,....0,U,(",1)),  pla,t)=—q(t)zn+po(t), 3

By substituting (3) into (1) we obtain the following problem on the cross-section o:
Up(2! t) —vA'U (2! t) = q(t).

U t)], =0, U(',0)=U@"2n),
where U (2'.t) = U, (2'.t) and ¢(t) are unknown functions. A’ is the Laplace
operator with respect to .

4)

The Poiseuille flow can be uniquely determined either prescribing the pressure drop q(t) or the
flow-rate F(t). However, in the real life applications the pressure is unknown, and only the flow-
rate (flux) of the fluid is given. Therefore, it is necessary to prescribe the additional condition

/ U t)de! = F(t), F(0)= F(2m).




Time-periodic Navier-Stokes problem in infinite cylinder IT was reduced
to the following problem on the cross-section c:

Up(2' t) —vA'U (2!, t) = q(t).
U t)], =0, U,0)=U@'2m),

Ao

/ U t)de = F(t), F(0)= F(2m).

We have to solve for U(x', t) and g(t) the inverse parabolic problem, i.e., for given
F(t) to find a pair of functions (U(x', t), q(t)) solving the above problem (6).

The relation between ¢(¢) and F(t) depends on the solution of the inverse problem.
The solvability of the time-periodic problem with the assumption that the flux F(z) is
from the Sobolev space W’2(0,2x) was proved in 2005. However, in applications and

numerical computations usually data is not regular. Therefore, we study the problem (6)
assuming only that F € L*(0,2x).




Problem (6) can be reduced to the case when all the involved functions have zero mean values.
2

Let us denote by H = % / H(t)dt the mean value of a function H.
0

Let (U,7) be a solution of the following problem

on o (the stationary Poiseuille solution corresponding to the flux F)

—UA’U(;;:?’] = q,
J(2")|ao 0. (7)

/Ui’di = F.

The solution (U t]) can be represented in the form

Uz') = £U[;,(;r_’ ) and  g= L where U (x") is the solution of the following problem:

KO Ko

—vA'Up(2") = 1, -
VA Uo(@) ~and Ko = /U(;,(:r’)da‘.' = V/|V!U0(i1‘-!)‘2dm! > 0.
Uo(2")| o6 : :




Let us represent the solution (U, ¢g) in the form

U’ t) =V (2" t)+U(2"), qt)=s(t)+q. (8)

Then obviously, V(2/) =0, 5= 0 and (V,s) is the solution of the problem

[ Vi(2! t) —vA' V(2 1) =
V(' t)oe =
V(a’,0)

/V(:r’,t)d:r"

o




FUNCTION SPACES

L?(0,T:V) is the Bochner space of functions u suc,h that u(-,t) € T/ for

almost all ¢ € [0,77] and the norm [[ul| 2o 7.v) /H 1) dt

s finite.

Let us consider the set of smooth periodic functions

C2(0.2m) = {h € C°(RY): h(t) = h(t+2m) vt €R'}.

Let L?(0,27) be a Lebesgue space on the interval (0,27). We extend the
functions from L?(0,27) to the whole line R! by putting f(t+27) = f(t)

for any . To emphasize that functions are periodically e}frended to R we

use the notation L2(0.27). Let LF(0,27) = {h € LZ(0,27) : /h t)dt = 0}.

Denote by 1@%*2(0, 27) be the closure of the set C°(0,27) in W2 norm.

Let W 12(0,27) be dual of W22(0,27), i.e., W7 12(0,27) = (W22(0,27))".




PRIMITIVE FUNCTION AND ITS PROPERTIES

For any function f € Lfa([l. 2m) denote by S¢(t) its primitive:

to+2m
/ f(r)dr, where ty€ [0,27),t € [to,to+ 27].
[

154(t
Clearly, - ft( L o). Sy(to+2m) =0.

(L

Moreover,

27 2rto+27w to+27

2
[\Sf(t)\zdt < 27?/ / |f(7)Pdrdt < Ax? / |£(7)|?dr = 4x* /f(’r)\zdr.
0 0t to 0

and S¢(t) is a periodic function:

to+2m to to+2m to+27

St 4 2m) = — [ f(T)dT'/ Flrydr = — / F(r)dr+ / f(r)dr

tLor ' to
— 54(0)— S¢(ta) = 54(0).

mm) Thus, Sy e L;(0,2n)




DEFINITION OF AWEAK SOLUTION

Let F € LE (0,27). By a weak solution
of the problem (9) we understand a pair (V,s) such that
Ve Lf (0,27;L3(0)). s € H’}:LQ(O,QW), V(2! t) satisfies the flux condition

/V@umf:Fm

and the pair (V,s) satisfies the integral identity

2

27
j / V(@ )2, ) da’ dt +v [ / V'Sy (2 1) - V(o #)da’ dt
0 o 0o

2w

= / Ss(t)‘/:r;t(;n’_,t)dx’dt

0

for any test function n € Lé(Ot 27;W12(5)) such that 7, € Lf (0.2m: W12(a))




MAIN RESULT

Theorem Let F € LE(D.,QW}. Then the problem (9)

unique weak solution (V, s). There holds the estimate

2w 2
. 2
/ f V(2 t)|*da dt + [ / VS (a! 1) do'dt
5o 0 5
2 2

n /|SS(T)\2dTgc[|F(T)\2dT,
i i

where the constant ¢ depends only on o.

This theorem is proved applying some version of Galerkin approximations.

admits a




CONSTRUCTION OF APPROXIMATE SOLUTION

Let uy(2') € WH2(o) and )\, be eigenfunctions and eigenvalues of the
Laplace operator:

/V;(‘N)(x',t)-u-k(;z’)dat’—I-V [V’V(‘N)(:c’,t)-V'uk(:c’)dx’

=) [, k=128,

{ TrAu(@) = (),
w}({;‘\"}([)) — 'w;(:v) (2:“_): k=1,...,N,

ur(2')|,, = 0.

Note that A\; > 0 and klim AL = o0. The eigenfunctions uy(z’) are orthogonal
— 00

Y (N / s
in L?(0) and we assume that u(z’) are normalized in L?(c). Then ‘/V( (@' t)da’ = F (1),

/|V’ak( NEdr' = A, /Vuk V() da! =0, kL.

o)

Moreover, {uy(z')} is a basis in L2(¢) and W2(o)

We look for an approximate solution of the problem (9) in the form

N
VN (2 ¢) )(tjuk

27
o™ @) = B [ Grlt,r)s M (r)ar,

/' 0

4, — ] i (2')da! Green function




CONSTRUCTION OF APPROXIMATE SOLUTION

/Hm%fﬁwﬂfwf+v[vwﬂwguyvmﬂfmf

— sM(y) / wp(e)da!, k=1,2,....N, Orthonormality

BrsMN(t), t e (0,2m),
’IL,}E:"\ )(0) — w}({‘\] (2,“_): b — 13 o ’j\r:

/Vwaﬁdﬂ:F@L

a




CONSTRUCTION OF APPROXIMATE SOLUTION

Green function Now the flux condition yields

( e_/\k(t_?_)

e~ Mk (t—7+2)

1 _ B—QTF/\k

) Thus for the function s&¥) we derived Fredholm integral equation of the first

kind:
2 N

/Z B2G(t,7)sN) (r)dr = F(2).

It is well known that such equations, in general, |are ill-

posed in L? setting. In order to regularize the equation | we consider

the following Fredholm integral equation of the second kind:

2T N
as®(¢) /Z
et

where later o will tend to 0




CONSTRUCTION OF APPROXIMATE SOLUTION

we study the regularized problem

/(V::EN))t(a”st)“k(l’r)df+V/VFW-V’-u.k(;;[:’jd.:{?’

SOLUTION
the pair (V}ENJ (',t), siv) (2))

where




A PRIORI ESTIMATES

Let the pair (V},E-M(;r t),s (\)( t)) be the solution of the problem (10)

and Uy(z') be the solution of problem _VAUy(a!) =
fo(2")| oo

Consider the integral /V;(.N)(;J:’,t)Ug(J:')dx'. Since the mean value

ST

1;;(."‘\;)(3:’) =0, we have

7 / VAN (a! 1) Up (2 )da’dt = ‘ / Up(z") (‘TV}ENJ(I’,tJdt) dz' = 0.

Therefore, by the Mean Value Theorem there exists t, =t,(a, N) such that

]V N)(#',t.)Up(2')dz’ = 0. The point t,(a,N) depends on a and N

By periodicity we also have /V}w)(:ﬁ’,t* +27m)Up(z")dx" = 0.

Let fe L? £(0,2m). For t € [t.,t. +27] define the notation
t +27

Si(t) = — / f(r)dr. Since the mean value of f vanishes, we have
t

S}(ts +2m) = S3(t.) = 0. Moreover, ——

te+2m te+2m

//|V;£Amr)(3~_rjt)|2dmfdtgg / |S:g\r](t)|2dt

fe a fe
tet+2m

1 .
— E(#)|2dt,
+oz / |F'(t)|dt,

[

t.4+2m

1 Crx ’ 2 ’
/ ‘/|v Sy OPdd g

ts

t,—2?‘|’ t*—|—2‘}T

. . , 1 ,
< (4r? +1) (e / 18700 (8) Pt + 5 / P () dt)

ts [




A PRIORI ESTIMATES

t,+2mw
. . 2 o 1,
Let us estimate the integral [ }S:{N) (t)|"dt. Let Uy e T-Vl-'z(cr) be a
t‘*

—vA'Uy(2')
Uo()|os

(11)

solution of the problem {

Remind that the flux of Uy is nonzero,

Ko = /Ug (z")dz" > 0

Since {ug(z’)} is a basis in Wi2(o), Uy

can be expressed as a Fourier series in W12(o):

o0

Up(x') = Z apup(z'), ap € RL
k=




A PRIORI ESTIMATES

Let us multiply the relations (10) by a; and sum them over k. This

gives

VI (o ) Us(2)da' +v | VVIN(2 1) - V'
/ et de 1/ 0 — [ (V) (@ U+ F(8) = s (t) = s (e,
sg ]Uo )d&:‘—s\)() 4

i.e.,

(V) _ '(J\"j / T ! -y
N ko+a)sa (1) = [ (V) (2, t)Un(z")dz" + F(t).
On the other hand, multiplying (11) by V},‘(f\)(;n', t) and integrating by parts (ko +e) () ( )@ D) ¥

in o we obtain

y/voo ) V'V (! 1) de!

— / V(! t)da! = F(t) - as™(t).

Integrating ‘ with respect to t from 7 to t, + 27 we obtain

tet+2m
(ko + ) / St -:—("‘C-OJrﬂ')S:{N)(T)

o

T fot2m (12)
= [V Ui’ + [ Fot




A PRIORI ESTIMATES

Here we have used the choice of the point t,, that is

/V;SN)(IIJ*)D?{)(IF)C{;BI _ /V;JENJ(IIJ* —f—zﬂ'}Ug(;BI)d.l‘f —0.

and hence,

t.+2m

[ [ ), (' ) Up()da dt = — /v (!, 7)Up(a')da'.




A PRIORI ESTIMATES

_ 12) i . .
From (12) it follows that Earlier we had that

te42m

(no+a / }S*{f\) )|2d*r t.+2m t,+2m

g ay [ Ve paace [ (s

T+ a [ .

/ /H/ (2,7 | dx'dr + tt72ﬁ|F )| d'r) /

(a3

) T

te+2m te+2m

/ / VIV (@', 1) Pdadt < ce ] / V(' ) Pda’ dt + e / F@)|”

t* a t,, o
and choosing ¢ sufficiently small we obtain

to+2m

[ [ VN (! 4 Pdatdt <

s a




A PRIORI ESTIMATES

The estimates (14) and (15) give

t.+2m t.42

/\S:{M(T)Fd’rgc / () dr.

ts ts

Finally from (13) and (16) it follows that

t.4+2w 5 t.+2m
[ [9sim@ ol ata<e [ |F@)f.
A ‘

ts

The constants in are independent of o and N




EXISTENCE

The approximate solution satisfies the integral identity

2w

/ / VN (2 t)n (2 ,t)da dt

0o
27
‘I—f// [VIS;{N) (LBI:t) -vf'l}t(&?r,t)da?fdt
U -

M
for test functions 7 having the form n(z’,t) = Z d, (t)ug(z).
k=1

dy(t) € LZ,(0,2) such that dp (t) € LE(O,Q?T),

(V}E"‘V)(a:',t),sgv)(t}) obey the a priori estimates with :

constant ¢ independent of o and N.

2w 2 9
/ / VN (! )P’ dt + / / V'S? o (o 1) dadi+
0 0 - °

27 27
[|S:(N)(T)|2d?' < C/|F(T)‘2d1'.
o 0




EXISTENCE

Let us fix N and choose a subsequences {a;} and {(V}EEN}(J:’,*&),S&?r)(t})}

such that lim a; =0, {I/;,E;M)} converges weakly in Lj'f (0,27;L?(o)) to some

oo
174%08 {S;’cﬁ}w]} converges weakly in Lé(O,Qﬂ;I’i‘rl’z(g)) to Sy-v). Recall that
for U e LE(U,T;LQ(G)). and Sy is the primitive of U. Moreover, {s&?)}
converges weakly in ﬂ-"gjl-‘g(ﬂ, 21) to sN). The last convergence means that
27 2w
fm S:g?r}(t)-rz’ (B)dt = / S () (t)dt = (s™M.m) e WE2(0,2m),
0

In (17) taking o = a; and passing to the limit as a; — 0, we get
2w

N (2! )y (2, ¢)da! dt
//‘V (', t)n (2’ t)da’ dt (19)

0 o
27
‘I—I// [VISV{J\J)(;BIJ) -V’-x;t(a:’,t)da:’dt
0 o
2m

Obviously, for the limit functions VV) and S v) remain

= /SS(N](T)]'T}t($r,t)d$rdt.
0 o

valid with a constant ¢ independent of V.




EXISTENCE

Let us show that V V) (2/,¢) satisfy the ux condition:
[ VN (! t)da! = F(t).

Integrating the equation

27
as™(t) / BEGL(t,7)sN) (r)dr = F(t),

0 .:

for « = a; from t to 27 yields

2

s o0+ [ / V(! r)da'dr = Sp(t). (18)

t o




EXISTENCE
Obviously, the sequence {{pgm)(r) = f Véf)(x"ﬂ')dx’} is bounded in L%(0,27). So

. . N .
we may assume, without loss of generality, that {\pg )(T)} is weakly convergent to

©oM) in L?(0,27). Then, the sequence of primitives
27

S’»OEN)(t) = f pEN)(T)dT — Sw(m)(f) for all t € [0,27] and hence
t

HSLP(N) - SQQ(N) HL2(0,211’} —+0as/— (&'; — 0) From (18) we have
I
”S@(NJ - SFHLQ(O;QW) - QJ'HSS(N)”,‘_Q(QQW) <cap—=0 as | — oo.
I o

Therefore,

2m 2w
f f VIN(x!, 7)dx dT = f F(t)dr for a.a. t € [0,2n],
t o t

and differentiating this equality with respect to t we get the flux condition.




EXISTENCE

Since the pair (V(N)(X’, t), s(N)(r)) obeys the same a priori estimates with the

constants independent of IV, there exists a subsequence {( VN (! t), s(NK) (t))}
such that {V(Nk)} converges weakly in LQ(O 27; L?(0)) to some V, {Sv(Nk }
converges weakly in L2 (0, 27; W12(a)) to Sy and {s(Mk)} converges weakly in
W;1=2(0, 2m) to s. In (19) passing to the limit as Ny — 400, we obtain

2w 2w
f f V(x', t)ne(x', t)dx dt + v f r V'S (X', t) - V(X' t)dx dt
0 o 0 o o

= sz(T) fn;(x )dx' dt

Integral identity . is proved for test functions 1 which can|be represented as the
sums: 7(x’, t) Z dic(t)uk(x") with di(t) € L2,(0,27) such that d](t) € L§(0,2ﬂ').

But such sums are dense in the space of test functions. Therefore, @ remains valid
for all the test functions 7.
Moreover, V(x’, t) satisfies the flux condition:

[ V(X' t)dx" = F(t).

a




Poiseuille-type
approximations for
axisymmetric flow in a thin
tube with thin stiff elastic wall



NOTATION

Cf = {(z1,29,23) e R3 : 23 + 23 < €3, 23 € R}

C¢={(x1,29,23) e R®: 2 <2l + 22 < (e1+¢)%, z3 € R}
since 1 = ﬁ;r%—I—:r%

L ={(zs.r)eR?: z5e R, r € (0,61)}

L¢={(z3,7) eR?: 23 e R, r € (1,61 +¢)}

£

and

F" = {(23,0): z3 e R}
Ft = {(z3,61) : =3 € R}

Fe1te — {(z3,61+¢) : z3 € R}

c<<er<<1




NOTATION

5 _ 0 Ougy Ou, 1 9 ( (8“3 a“'-")) A (8“3 6“‘?‘><— Linear elasticity operator
by = g (O (G o) o (G )45 (G v am

9 (Bus Bu\\ O (. [Ouz 1 W\ 2 /ouw /
Lu-8, = — (u( us o ))—I—(/\ (E—I-;'u,) —I—()\—I—Q,u)au )—I—Q—'& (di—lur)

Oxa Or Oxs or Ors or r \or r

Ous , Oup 1 . Divergence operator for a vector-valued function
Ox * or + 7 tr
) -

div.u =

) 0.S 10, 05 10 )
div.S = o3 + _—L(?,STB)> Ps + ( - + . ‘-,,(T’STT)

drs 1 Or ds

dusg 0
drg  Or

1
0 — 0

r uT v\ . .
Oy 0 Oy The gradient operator for a vector-valued function
dxrg  Or }

. (ch + (VCU)T)

Divergence operator for a symmetric tensor-valued function

“— Velocity strain tensor




RESULT OF G. PANASENKO AND R. STAVRE (2020)

py w: &w:
_f : -);('1'3-{)'*'..——-;(-1'3.?() 3

Mox2
2 E
ey O r r)'u
___)_Q( " 3

Ta.t)—e1— Ta.t
Jxa ©3,t) 12]()“)1;(”

4
nJi Pws J*ws
3,t) + =3 (Z3,t) |,
v 0?0z ;(” )+r‘)t(').rj-§(” ))

v oOt?

p(x3,7,t) = q(z3,t),

ug(xs.r,t) = wy(xs.t) + ( f)(

0

f 1—'r
dr
J u(7) )

pf *ws . Pws
)f) ('1-"f) )t )' ‘( t))‘

XD
erter N +2u(n)

/_H- =T M7 +2,u( )(IT)

1—71

wile| [ ————dr | (203
TV Nr) +20(r) (' 1 33

0%y
— —(x3,t) —q(x3,t) |.
Vo (3,t) ~ a(zs ))

Here, for the leading terms, we keep the same notation as for the exact

solution.




RESULT OF G. PANASENKO AND R. STAVRE (2020)

Note that the leading term for pressure, g, is related to the scaled average

velocity () by 5
’q

Oz

where f3 is a longitudial external force which represents action on a fluid.

(.I‘;;:t) + 16VQ(IZ%:t) = f33

So, from (4.9) we can consider only two independent basic functions of the
leading term of the ansatz and the radial displacement of the wall-fluid

interface, w;, can be approximately calculated as

g1 Ows

¢
a [0
wy(z3,t) = AELIS'/"&:?:;(I&T)dT — 5%(3:3,15),
0

and so,
f)Q &1 82112'3

ow, ;
z5. 1) = —e3—=(z3,8) — — x3.t).
ot ( 3 ) 183’:3( 3 ) 2 5?53:6;( 3 )

If we need a continuous approximation of the velocity at the interface,

then we have to add the third order terms in the approximation of u,:

ur(z3,t) =

3 2,
i (_p_f 2 (z3,t) + 7=

a 16 14 (9ta:1}3




Oy 1 in L2 (0,T), MATHEMATICAL MODEL

wppfw —wplu=c¢""g

pf% —2vdiv.D.(v)+Vp=f

in LY < (0,7,
div,v =0

Uy = on FUx (0,7),

% Ouy

Or  Oxa

on F=1%5 % (0,T),

1 — periodic in 3,
in L,

in L',




THE VARIATIONAL FRAMEWORK OF THE PROBLEM

For the fluid domain we consider the following spaces

L2D) = {0: D! > R2: /T?,Z)Q($3,T)d;r3d?'< st
Df
W12(D1) = {4 € LX(D/) : / r|Votb |2 (3, 7)dgdr < oo},

Df
Wi2(Df) = {4 e W'A(D') :14p = 0 on T*1},

W22(D)) = {4p e WI2(DT) ] r|V2ep|? (23, 7)dzsdr < oo},

where




THE VARIATIONAL FRAMEWORK OF THE PROBLEM

In the framework presented above, the variational formulation of system (M) developed by G. Panasenko and
R. Stavre can be expressed as follows:

Find (u,v) € Hy x Hy, such that
d / ou(t)
—

+wpan (), p)+o g [r(0)
wa— T W T
pdtb. P at YTwpar ¥ Pfdt

Df

+2V[._. (v(t)) : Do() :E—l/_?.g(t).(p ) vz /&5’1 (r3,1)day = }

D

+/:t p V(g,) €Sy, ae. in (0,T), (Df] div.th =0, . =0 on FU}
C I 1

o‘u

; . - . 52
5 i QTR Leewioro). 22 oo J}
u(0) = in L} .,.(D%),

r,per

eLﬂ(o,T;V’)}.
v(0)=0 in L2 D ),

r per

where ay, defined by

_ /. Ouz Opy  Ouy, Oy
aL[&’@) —D[-‘ ('u(g(@—ig B'.L';} + ar or )

dus  Ou,\ (O3  Dp, ) u o,
- 222 70) + Adiveudi
+( or +61_-3) ( o T oz ) T ) + Adiv.udiv.e




MODIFIED VARIATIONAL FORMULATION FOR NUMERICAL SETUP

We will modify the boundary conditions at the ends of the tube. Instead of the periodic solution with respect to the variable
X3 we introduce some given inflow and outflow supposing the tube with elastic wall being clamped at the ends of the tube.

d%u
wﬂp&@ —wplu=0

divev =10

{ pf% —2vdiv D (v)+Vp=10

v =0
duy  Ou,
or H Oxy
)\(l)g%i +(A\(1)+2u(1)) %: ’:(il
du
ot

Ovy  Ovp\ i dus  Ou,
v (a— + aﬁ) =wpn(0) (a_ + al-a)

o, dus du,  A(0)
20 G = (O A0 +20(0) G2+ )

ur =0

v

= ﬁ(:f - "'2)95?1(”:1"3 =0,u=0

£ —12)gout (t),v3=0,u=0

BU(O):U

v(0)=10

in L x (0,T),

in L' % (0,T),
U={pecWDs)},
V= {v‘: e W2(D7) :div,yp =0, ¢, =0 on ro}’

on FYx (0,T)

Feite (0,7, 2
on % (0,T), 52

7 r1,2 7Y -
H; = {apE Wh=(0,T:U0) 50

€ Lﬂ(o,T;{?’)},

Hy = {1 e L*(0,T:V): % € Lj(ozT;fﬁ”J}.



MODIFIED VARIATIONAL FORMULATION FOR NUMERICAL SETUP

T a2
- ug 9u,
Wp Tpe( 8f‘3 'jv3 G—)_t) \rJ]‘)
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Here 2c2Q) is the average velocity, 2me?Q is the flux.
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MODIFIED VARIATIONAL FORMULATION FOR NUMERICAL SETUP

2
vy (xs,rt) =4&Tf (1—1—2) Q(x3.t),
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MODIFIED VARIATIONAL FORMULATION FOR NUMERICAL SETUP

Further we will consider a shorter approximation for the solution: We assume that p and A are constants, so we have the
N 2 following expressions:
vy (e, t) =43 (1= ) Qs 1),
=] =
-
v, t) = —E-‘I’—(E —

-
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MODIFIED VARIATIONAL FORMULATION FOR NUMERICAL SETUP

Substituting (M) into the following integral identity
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locity magnitude (m/s) g(inlet)=sin(2t)

g(outlet)=sin(2t+0.1)
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locity magnitude (m/s) g(inlet)=sin(2t)

g(outlet)=sin(2t+0.01)
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Y-SHAPED NETWORK OF VESSELS ie0sinc
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Efficient computation of blood
velocity In the left atrial
appendage: A practical

perspective
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CHA5DSs—VASe Score

Congestive Heart Failure 1 point
Hypertension 1 point
Age > 75 years 2 points
Diabetes 1 point
Stroke 2 points
Vascular disease 1 point
Age > 65 years 1 point

Sex category, female 1 point

CHA,DSy VASc (or CHADS,) score system. Maximum total
score = 10 points. ESC 2010 Anticoagulation Recommendations: Score

= 0 no therapy or aspirin. Score = 1 aspirin or oral anticoagulation (oral

anticioagulation preferred). Score > 2 oral anticoagulation.
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FIRST STEP PULMONARY
( pu; — pAu+p(u-Viu+Vp =0, =,
div u =0,
ulp, =0,
ulp, = g(w, 1),
ul:|r; =0, plry =0,
u(x,0) =0,
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SECOND STEP

In the second step we make computations in a fully coupled model where
for a fluid flow we utilize the reference velocity obtained in the first step

and the equation of motion from shell theory. The FSI code applies the

Uflyand-Mindlin shell theory for the elastic wall (in our case myocardium).

Namely, the displacement vector u is expressed in the local coordinates in

the following way:

u(zy,m9,23,t) = n(x1,72,t) + 23 (71,29, 1),
where z1 and x2 are coordinates in the plane of the shell, 23 is a normal
coordinate , n(x1,x2,t) is the displacement vector of the

shell and (z1.x2,t) is the displacement of shell normal.

The equation of motion where the divergence of stress equals the volume

force is as follows:

Z
2 o d’

where Fy = FT4 My = % z= {% F is the deformation gradient;

JoF~T is the 15t Piola-Kirchhoff stress, J = det F' is the Jacobian determi-

02, 32
p(a 2422 C) =V -(JoF )T +Fy +6(My x n)

nant; d is the thickness of the wall, p is density of the wall, M 4 — moment, K
— viscous stress tensor. The local z coordinate [—1,1] for thickness dependent
results z. Its value can be changed from —1 (downside) to +1 (upside). A
value of 0 means the midsurface of the shell. This is the default position for
stress and strain evaluation during the analysis of the results. Moreover if

we use a cross product rule for moment we obtain:

Maxn=[My —My 0,
d/2

where M;; = / z3o;jdrz and n=[0 0 17

—d/2




SECOND STEP

The junction conditions equating the normal stresses and the velocity ‘ (3
2 +0),

at the boundary of the reference configuration (i.e. when z belongs the Oxy

interface):
0 0(s
+x3——+C),
F:’l - (_p\vnlll_ [_PI—FKD -1, 2 8:1:2 )

and the velocity of a moving wall (translational velocity) is

d an: ¢
1 72 [©) +C3)-
2

Om o2y
0rq 363:1 dx9 e

ot We prescribe the total pressure on the surface of the shell

5 033 = 213+ ,\(
u(z+nlet),t) =5

We take into account, that the average stress tensor of the unloaded
1 d/2
2
shell {a,) = /szz =3 [ Ogqadzy = 0.
-1 —d/2
Since the strain tensor (see [56]):

ool

280+

pressure, Pa

1,0u; Ouy
and stress tensor

Tij = Aeprdiy + 2pg;,

where A and p are Lamé parameters, d;; is Kronecker coefficient:

0 if i#j
1if i=j,

ij =




PATIENT-SPECIFIC COMPUTER FSI SIMULATION FOR
CACTUS LEFT ATRIUM GEOMETRY

SINUS RHYTHM
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PATIENT-SPECIFIC COMPUTATION OF BLOOD FLOW
VELOCITY IN THE LA

STROKE NO STROKE

agnitude (m/s) ime=0 s Slice: Velocity magnitude (m/s)




> SIMULATIONS >

PATIENT-SPECIFIC COMPUTATION OF BLOOD FLOW
VELOCITY IN THE LAA

STROKE NO STROKE




Blood velocity
magnitude in LA,
when the angle

Slice: Velocity magnitude (mys)

between LA

and LAA, | — 30°,
Il — 50°, Il —70°,
IV —90°




