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Mathematical Models

Optical pulse evolution is described by the one-dimensional
reduction of the Maxwell equations

∂2
zE −

1

c2
∂2
t

(
ε̂E + χ̂(3)[E ,E ,E ]

)
= 0. (1)

The operators ε̂ and χ̂(3) describe dispersion and nonlinearity,
respectively
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The frequency-domain representation Ẽ (z , ω) is related to the field
function E (z , t) through

Ẽ (z , ω) =

∫ ∞
−∞

E (z , t)e iωtdt, E (z , t) =

∫ ∞
−∞

Ẽ (z , ω)e−iωt
dω

2π
.

If the pulse field is decomposed into Fourier harmonics, the action
of dispersion operator ε̂ is described by

ε̂E (z , t) =

∫ ∞
−∞

ε(ω)Ẽ (z , ω)e−iωt
dω

2π
.
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The mathematical formulation can be gained by using operators
related to the refraction index n(ω) and the wave vector
(propagation constant) β(ω), where

n(ω) =
√
ε(ω), β(ω) =

ω

c
n(ω). (2)

Returning to the physical space, we obtain that F (z , τ) is governed
by the FME

∂zF +
(
β̂ − V−1∂τ

)
F +

4n2

3c
∂τ
(
F 3
)

= 0. (3)
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The just derived FME is a natural competitor to the GNLSE

i∂zψ + b̂ψ +
n2

c
(ωC + i∂τ )|ψ|2ψ = 0,

b̂ψ =

∫ ∞
−∞

b(∆)ψ̃(z ,∆)e−i∆t d∆

2π
,

b(∆) = β(ωC + ∆)− β0 − β1∆,

β0 = β(ωC ), β1 = β′(ωC ),

R. ČIEGIS Numerical Methods for Optical Fibers



ωC ω

ω

ωC+ωMωC−ωM

ωM−ωM

0

GNLSE

FME

Figure : Schematic representation of frequencies resolved by the
GNLSE and FME models.
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Linear terms in both FME and GNLSE are treated in the frequency
domain. We use the following Fourier sum representation of the
grid function Uj :

Uj =
[
F−1(Û)

]
j

:=
1

J

∑
`∈J

Û`e
−iω`jh, j ∈ J = {−J/2, . . . , J/2−1},

ω` =
π`

τR
,

where Û` are the Fourier coefficients defined as

Û` = [F(U)]` :=
∑
j∈J

Uje
iω`jh, ` ∈ J. (4)
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Numerical schemes for FME

We approximate the FME problem (3) using the following
pseudo-spectral symmetric Strang splitting scheme

Û
n+ 1

2

` = e iκB(ω`)Ûn
` , ` ∈ J,

Un+1
j − U

n+ 1
2

j

κ
+

4n2

3c
∂hτ

(Un+ 1
2

j + Un+1
j

2

)3

= 0, j ∈ J,

U
n+ 3

2

j − Un+1
j

κ
+

4n2

3c
∂hτ

(Un+ 3
2

j + Un+1
j

2

)3

= 0, j ∈ J,

Ûn+2
` = e iκB(ω`)Û

n+ 3
2

` , ` ∈ J.

(5)
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The nonlinear advection subproblems can be resolved using the
iterative procedure,

Ũs
j − U

n+ r
2

j

κ
+

4n2

3c
∂hτ

([ Ũs−1
j + U

n+ r
2

j

2

]2 Ũs
j + U

n+ r
2

j

2

)
= 0, j ∈ J,

Ũ0
j = U

n+ r
2

j , s = 1, . . . ,S , r = 1, 2,

or can be approximated again by the explicit Richtmyer two-step
Lax-Wendroff method:

U
n+ r

4

j+ 1
2

=
1

2

(
U

n+ r−1
4

j + U
n+ r−1

4

j+1

)
− 4κn2

6hc

([
U

n+ r−1
4

j+1

]3

−
[
U

n+ r−1
4

j

]3)
,

U
n+ r+1

4

j = U
n+ r−1

4

j − 4κn2

3hc

([
U

n+ r
4

j+ 1
2

]3

−
[
U

n+ r
4

j− 1
2

]3)
, j ∈ J, r = 3, 5.

R. ČIEGIS Numerical Methods for Optical Fibers



Parallel algorithm

All parallel numerical tests were performed on the computer cluster

“HPC Sauletekis” (http://www.supercomputing.ff.vu.lt) at
the High-Performance Computing Center of Vilnius University,
Faculty of Physics.

We have used nodes with Intel R© Xeon R© processors E5-2670 with
16 cores (2.60 GHz) and 128 GB of RAM per node. Computational
nodes are interconnected via the InfiniBand network.
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Let us assume that P processes are used. We decompose the
computational grid Ω̄τ and a set of indexes J into P
non-overlapping size-balanced sub-grids Ωl

τ and subsets Jl ,
l = 1, . . . ,P:

Ω̄τ =
P⋃
l=1

Ωl
τ , J =

P⋃
l=1

Jl .
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1. Solve the local cubic nonlinearity subproblem:

U
ñ+ 1

3

j = exp
(
iκ

n2

c
ωC |U ñ

j |2
)
U ñ
j , j ∈ J`.

The algorithm is parallel and no data communication is required.

2. Solve the nonlinear advection subproblem:

U
ñ+ 1

6

j+ 1
2

=
1

2

(
U ñ
j + U ñ

j+1

)
− κn2

2hc

(∣∣U ñ
j+1

∣∣2U ñ
j+1 −

∣∣U ñ
j

∣∣2U ñ
j

)
,

U
ñ+ 1

3

j = U ñ
j −

κn2

hc

(∣∣U ñ+ 1
6

j+ 1
2

∣∣2U ñ+ 1
6

j+ 1
2

−
∣∣U ñ+ 1

6

j− 1
2

∣∣2U ñ+ 1
6

j− 1
2

)
, j ∈ J`.

The Richtmyer two-step Lax-Wendroff scheme is explicit, and all
computations are done in parallel. The approximation of fluxes requires
to exchange values of the solutions at boundaries of subdomains. The
communication of data is done only among adjacent processes.
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3. Solve the linear propagation subproblem:

Û ñ
s = e iκb(ωs )Û ñ

s , s ∈ J`.

This algorithm is implemented in parallel and no communication is
required.

The discrete FFT should be done before and after this step, and this

transform is the most computation intensive part of the parallel

algorithm. It takes about 56% of all CPU time. We have used the parallel

version of FFTW library to implement the discrete FFT algorithm.
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Table : The total wall time Tp, speed-up Sp and efficiency Ep for
solving GNLSE problem with two sizes of the discrete problem: small
J = 16384, N = 60000 and large J = 32768, N = 120000.

J = 16384, N = 60000 p = 1 p = 2 p = 4 p = 8 p = 16

Tp 567 327 167 83 48

Sp 1 1.734 3.40 6.83 11.8
Ep 1 0.867 0.850 0.854 0.738

J = 32768, N = 120000 p = 1 p = 2 p = 4 p = 8 p = 16

Tp 2280 1300 632 331 188

Sp 1 1.75 3.61 6.89 12.1
Ep 1 0.877 0.902 0.861 0.758
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If this parallel algorithm is computed on two nodes with 32 processes, the
distributed memory version of the FFTW algorithm is applied.

The efficiency of the parallel algorithm is seriously degraded, the larger
problem is solved in T32 = 283 seconds, which is close to the time used
for the same calculations by 8 processes.

In order to show that the parallel efficiency of the remaining part of the
algorithm is optimal, computational experiments are done for a larger
problem with full nonlinearity but vanishing dispersion. The following
results are obtained:

T1 = 1002, T2 = 504, T4 = 253, T8 = 129, T16 = 73, T32 = 37.
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Example

Solutions of the FME and GNLSE models are compared. We use β(ω)
for bulk fused silica and let the pulse circular frequency ωC correspond to
the wavelength 2.216µm [ν0 = ωC/(2π) = 135.3 THz].

The initial pulse has a cosh−1 shape and is given by

E (z , τ)|z=0 =

√
P0

cosh(τ/τ0)︸ ︷︷ ︸
ψ(z,τ)|z=0

sin(ωC τ),

where τ0 = 13 fs. The seed pulse contains three oscillations of the wave
field at half-maximum.

The normalized initial peak power n2P0 = 0.0288 is 60% larger than that
of the fundamental soliton at frequency ωC . Such a pulse cannot
propagate without changes in its shape, as opposed to fundamental
solitons.
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Figure : Exemplary solutions of the GNLSE (a,c) and FME (b,d) for a
three-cycle pulse that propagates in fused silica. The energy density plots
are given in space-time (a,b) and space-frequency (c,d) domains. See
text for parameters and discussion.
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The GNLSE solution, see Fig. 2(a,c), shows slowly decreasing power
oscillations with the increase of z both in space-time [Fig. 2(a)] and
space-frequency [Fig. 2(c)] domains.

At maximum compression (z = 1.5 mm) of the pulse, its spectrum
achieves its maximal width, which is sufficient for generation of a wave at
the new frequency [650 THz in Fig. 2(c)], the so-called soliton’s
Cherenkov radiation. The radiation is responsible for asymmetry of the
pulse field in Fig. 2(a).

The FME solution is shown in Fig. 2(b,d). The space-time
representation is similar to Fig. 2(a), whereas in the frequency domain we
see notable differences.

Not only the third harmonic of the carrier frequency becomes visible [at
400 THz in Fig. 2(d)] but also two new Cherenkov-type lines appear.

Such lines attracted recently considerable attention, their adequate
explanation and accurate description are still under debate.
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On motivation to study Mathematics

A Toolbox of Mathematics

Complex numbers

Hilbert spaces

Hermitian operators

Eigenvalue problems

Fourier transform (FT), ODE theory

Probability theory (mean, or expected value, variance, standard
deviation)
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Nobel prize level examples

Heisenberg’s uncertainty principle

∆X ∆P ≥ ~
2
,

where X is position, P is linear momentum, ~ is the Planck
constant

~ = 1.0545718 · 10−34.

The Cauchy-Schwarz inequality

|(x , y)| ≤ ‖x‖ ‖y‖.

A particle-wave duality and FT.
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Definitions and axioms of QM

1. The space of states of a quantum system is not a set, it is a
Hilbert linear vector space over complex numbers.

It is composed of elements |X 〉 called ket-vectors or just kets.

Examples of elements:

a) n dimensional column vectors (x1, . . . , xn)T , xj ∈ C;

b) Functions g(x) ∈ C.

For every ket-vector |X 〉 there is a bra vector in the dual space 〈X |.

If z is a complex number, then the bra corresponding to z |X 〉 is
〈X | z∗.
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Example:

|X 〉 =

x1

x2

x3

 , 〈X | =
(
x∗1 , x

∗
2 , x
∗
3

)
.

The Inner Product

〈X |Y 〉 .

The result of this operation is a complex number.

〈Y |X 〉 = 〈X |Y 〉∗ .
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Examples:

For row and column vectors we define

〈X |Y 〉 =
(
x∗1 , x

∗
2 , x
∗
3

)y1

y2

y3

 ,

for bras and kets defined as functions:

〈G |H〉 =

∫ b

a
g∗(x)h(x)dx .
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Orthonormal Basis

|A〉 =
∑
j

αj |j〉 ,

where the orthonormal basis of ket-vectors is used

〈j |j〉 = 1, j = 1, . . . ,N,

〈j |k〉 = 0, j , k = 1, . . . ,N, j 6= k .

Coefficients are computed as

αj = 〈j |A〉 ,

then we can rewrite the formula as

|A〉 =
∑
j

|j〉 〈j |A〉 .
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2. Observables are represented by Hermitian linear operators.

Observables are also associated with a vector space!

Linear Operators

Let us denote linear operators M : H → H:

M |X 〉 = |Y 〉 , |X 〉 , |Y 〉 ∈ H.

Hermitian linear operators:
1. Conjugate operators:

M |X 〉 = |Y 〉 , 〈X |M† = 〈Y | , M† = (MT)∗.

2.
M = M†.

R. ČIEGIS Numerical Methods for Optical Fibers



1. Eigenvalues of Hermitian operators are real:

L |λ〉 = λ |λ〉 , λ ∈ R.

2. The eigenvectors of a Hermitian operator are defining a
complete set.

3. If λ1 and λ2 are two unequal eigenvalues of a Hermitian
operator, then the corresponding eigenvectors are orthogonal.

The possible results of a measurement are the eigenvalues of the
operator that represents the observable.

R. ČIEGIS Numerical Methods for Optical Fibers



4. If |A〉 is the state-vector of a system, and the observable L is
measured, the probability to observe value λk is

P(λk) = |αk |2

where
|A〉 =

∑
j

αj |λj〉 .

After the measurement the state vector |A〉 = |λk〉.
For kets-functions we get the probability density

P(x) = ψ∗(x)ψ(x),

and the probability is given by the integral

P(a, b) =

∫ b

a
P(x)dx =

∫ b

a
ψ∗(x)ψ(x)dx .
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Uncertainty

The expectation value of observable L for a given state |Ψ〉 is the
average

〈L〉 := 〈Ψ|L|Ψ〉 =
∑
α

αP(α).

L̄ = L− 〈L〉 I.

The uncertainty (or standard deviation) of L is defined by

(∆L)2 = 〈Ψ|L̄2|Ψ〉 =
∑
α

ᾱ2P(α).
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Cauchy-Schwarz Inequality

Let |X 〉 and |Y 〉 be any two vectors in a complex vector space, then

2
√
〈X |X 〉

√
〈Y |Y 〉 ≥ |〈X |Y 〉+ 〈Y |X 〉| .

Let A and B be any two observables, we define

|X 〉 = Ā |Ψ〉 , |Y 〉 = iB̄ |Ψ〉 .

Then we get from C-S inequality

2

√
〈Ā2〉

√
〈B̄2〉 ≥

∣∣〈Ψ|ĀB̄|Ψ〉 − 〈Ψ|B̄Ā|Ψ〉
∣∣

≥ |〈Ψ|[A,B]|Ψ〉| , [A,B] = AB− BA.

since [A,B] = [Ā, B̄].
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Uncertainty Estimate

∆A ∆B ≥ 1

2
|〈Ψ|[A,B]|Ψ〉| ,

We know the state of the particle |Ψ〉 on x-axis.
We want to measure the position x and the momentum p.

The position operator X is defined by

X |Ψ〉 = xψ(x).
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We solve the eigenvalue problem

X |Ψ〉 = x0 |Ψ〉 , x0 ∈ R.

Every real number x0 is an eigenvalue of X and the corresponding
eigenvectors are the Dirac delta functions:

|x0〉 = δ(x − x0).

Our particle is a real PARTICLE with the wave function equal to
the state-vector

〈x |Ψ〉 = ψ(x).
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The momentum operator P is defined by

Pψ(x) = −i~dψ(x)

dx
.

Next solve the eigenvalue problem (ODE problem)

P |Ψ〉 = p |Ψ〉 .

The eigenvalue is any real value p, the corresponding eigenfunction

|p〉 =
1√
2π

e ipx/~.

Our particle looks like a WAVE (FT relation)

〈p|Ψ〉 := ψ̃(p) =
1√
2π

∫ ∞
−∞

e ipx/~ψ(x)dx .
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Compute product XP

XPψ(x) = −i~x dψ(x)

dx
.

Now compute PX

PXψ(x) = −i~x dψ(x)

dx
− i~ψ(x).

Thus the commutator acts as:

[X,P]ψ(x) = i~ψ(x).

Heisenberg’s estimate

∆X ∆P ≥ 1

2
|i~ 〈Ψ|Ψ〉| =

~
2
.
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