
Linear Data Structures

Raimondas �iegis

Matematinio modeliavimo katedra, e-pa²tas: rc@vgtu.lt

Rugs
ejo 30 d., 2023

Raimondas �iegis Lecture 3

Singly linked list

We note that this data structure is used to implement blockchains
� a backbone structure for most cryptocurrencies including bitcoins.

Singly linked lists contain nodes (a) which have a value �eld as well
as the next link (pointer), which points to the next node in line of
nodes (b):

T
 T
 T
 T
 NULL

L

a) b)

Raimondas �iegis Lecture 3

Singly linked list

We note that this data structure is used to implement blockchains
� a backbone structure for most cryptocurrencies including bitcoins.

Singly linked lists contain nodes (a) which have a value �eld as well
as the next link (pointer), which points to the next node in line of
nodes (b):

T
 T
 T
 T
 NULL

L

a) b)

Raimondas �iegis Lecture 3

As a basic element we de�ne a node, which contains the
information data �eld of type T and the next link (pointer) which
de�nes the address of the next node:

struct node {
T data;

node ∗ next;

}

T

Raimondas �iegis Lecture 3

Thus a singly linked list is a sequence (chain) of nodes. An entry
link L points to the head of a list (its �rst node).

T
 T
 T
 NULL

L

The next link of the last node is a null pointer. It points to nil (an
invalid link) and signals that the last node of the list is reached.

Raimondas �iegis Lecture 3

Thus a singly linked list is a sequence (chain) of nodes. An entry
link L points to the head of a list (its �rst node).

T
 T
 T
 NULL

L

The next link of the last node is a null pointer. It points to nil (an
invalid link) and signals that the last node of the list is reached.

Raimondas �iegis Lecture 3

Strong points of this data structure:

A linked list data structure might work well in one case, but cause
problems in another.
▶ A singly linked list is initialized by de�ning only an entry link,

which points to the end of this list (a minimum of memory).

▶ at any moment the linked list uses a minimum amount of
memory, su�cient to de�ne all its nodes,

▶ a node of the list can be stored at any free place of the
physical memory of a computer, thus neighbour nodes can
have very di�erent addresses.

▶ new nodes can be included into or deleted from a list very
e�ciently.

Raimondas �iegis Lecture 3

Strong points of this data structure:

A linked list data structure might work well in one case, but cause
problems in another.
▶ A singly linked list is initialized by de�ning only an entry link,

which points to the end of this list (a minimum of memory).
▶ at any moment the linked list uses a minimum amount of

memory, su�cient to de�ne all its nodes,

▶ a node of the list can be stored at any free place of the
physical memory of a computer, thus neighbour nodes can
have very di�erent addresses.

▶ new nodes can be included into or deleted from a list very
e�ciently.

Raimondas �iegis Lecture 3

Strong points of this data structure:

A linked list data structure might work well in one case, but cause
problems in another.
▶ A singly linked list is initialized by de�ning only an entry link,

which points to the end of this list (a minimum of memory).
▶ at any moment the linked list uses a minimum amount of

memory, su�cient to de�ne all its nodes,
▶ a node of the list can be stored at any free place of the

physical memory of a computer, thus neighbour nodes can
have very di�erent addresses.

▶ new nodes can be included into or deleted from a list very
e�ciently.

Raimondas �iegis Lecture 3

Strong points of this data structure:

A linked list data structure might work well in one case, but cause
problems in another.
▶ A singly linked list is initialized by de�ning only an entry link,

which points to the end of this list (a minimum of memory).
▶ at any moment the linked list uses a minimum amount of

memory, su�cient to de�ne all its nodes,
▶ a node of the list can be stored at any free place of the

physical memory of a computer, thus neighbour nodes can
have very di�erent addresses.

▶ new nodes can be included into or deleted from a list very
e�ciently.

Raimondas �iegis Lecture 3

Disadvantages of singly linked lists:

any node of a list can be reached by starting a search from the
beginning of the list and after checking in turn all nodes before it.

The duration of such a process depends where the node is stored in
the list.

In the case of arrays each element can be reached directly by using
the index of this element, since its address can be computed
explicitly.

Thus the duration of reading/writing information from/into any
element is the same and don't depend on the index value.

Raimondas �iegis Lecture 3

Disadvantages of singly linked lists:

any node of a list can be reached by starting a search from the
beginning of the list and after checking in turn all nodes before it.

The duration of such a process depends where the node is stored in
the list.

In the case of arrays each element can be reached directly by using
the index of this element, since its address can be computed
explicitly.

Thus the duration of reading/writing information from/into any
element is the same and don't depend on the index value.

Raimondas �iegis Lecture 3

The main operations of linked lists

Let us assume that data is written in a set A and we want to move
it into a new singly linked list.

We take elements from A one by one and add them to the
beginning of the linked list.

At each step �rst, we allocate a new node and add the information
from the element of A to the value �eld of the new node. The next
link of it is initialized to nill.

Then this node is added to the head of the list.

Raimondas �iegis Lecture 3

The main operations of linked lists

Let us assume that data is written in a set A and we want to move
it into a new singly linked list.

We take elements from A one by one and add them to the
beginning of the linked list.

At each step �rst, we allocate a new node and add the information
from the element of A to the value �eld of the new node. The next
link of it is initialized to nill.

Then this node is added to the head of the list.

Raimondas �iegis Lecture 3

The main operations of linked lists

Let us assume that data is written in a set A and we want to move
it into a new singly linked list.

We take elements from A one by one and add them to the
beginning of the linked list.

At each step �rst, we allocate a new node and add the information
from the element of A to the value �eld of the new node. The next
link of it is initialized to nill.

Then this node is added to the head of the list.

Raimondas �iegis Lecture 3

The main operations of linked lists

Let us assume that data is written in a set A and we want to move
it into a new singly linked list.

We take elements from A one by one and add them to the
beginning of the linked list.

At each step �rst, we allocate a new node and add the information
from the element of A to the value �eld of the new node. The next
link of it is initialized to nill.

Then this node is added to the head of the list.

Raimondas �iegis Lecture 3

7
 13
 5
 22
 28
A

a)

28
 22
 5
 NULL

L

13
 7

b)

Raimondas �iegis Lecture 3

Finding a node that contains a given datum

In a list L we want to �nd a node that contains a given datum/key
t.

The link NULL is returned if such datum is not stored in the list.

We start a search from the entry node and iterate through the
remaining list elements.

In the worst case it may require iterating through most or all of the
list nodes.

Raimondas �iegis Lecture 3

Finding a node that contains a given datum

In a list L we want to �nd a node that contains a given datum/key
t.

The link NULL is returned if such datum is not stored in the list.

We start a search from the entry node and iterate through the
remaining list elements.

In the worst case it may require iterating through most or all of the
list nodes.

Raimondas �iegis Lecture 3

Finding a node that contains a given datum

In a list L we want to �nd a node that contains a given datum/key
t.

The link NULL is returned if such datum is not stored in the list.

We start a search from the entry node and iterate through the
remaining list elements.

In the worst case it may require iterating through most or all of the
list nodes.

Raimondas �iegis Lecture 3

How to insert a new node?

The �rst task is to insert a new element e after the element v .

It is su�cient to change values of two links.

T
 v
 T
 NULL

L

e

a)

T
 v
 T
 NULL

L

e

b)

Insertion of a new element into the linked list: a) the list before
inserting element e, b) the list after the insertion .

Raimondas �iegis Lecture 3

How to insert a new node?

The �rst task is to insert a new element e after the element v .

It is su�cient to change values of two links.

T
 v
 T
 NULL

L

e

a)

T
 v
 T
 NULL

L

e

b)

Insertion of a new element into the linked list: a) the list before
inserting element e, b) the list after the insertion .

Raimondas �iegis Lecture 3

How to insert a new node?

The �rst task is to insert a new element e after the element v .

It is su�cient to change values of two links.

T
 v
 T
 NULL

L

e

a)

T
 v
 T
 NULL

L

e

b)

Insertion of a new element into the linked list: a) the list before
inserting element e, b) the list after the insertion .

Raimondas �iegis Lecture 3

How to insert a new node?

The �rst task is to insert a new element e after the element v .

It is su�cient to change values of two links.

T
 v
 T
 NULL

L

e

a)

T
 v
 T
 NULL

L

e

b)

Insertion of a new element into the linked list: a) the list before
inserting element e, b) the list after the insertion .

Raimondas �iegis Lecture 3

How to delete an element from the list?

It is a simple task to delete the element e which is the next node
after the given element v .

T
 v
 T
 NULL

L

e

a)

T
 v
 T
 NULL

L

e

b)

Deletion of an element from the linked list: a) the list before
deleteing element e, b) the list after the deletion procedure.

Raimondas �iegis Lecture 3

How to delete an element from the list?

It is a simple task to delete the element e which is the next node
after the given element v .

T
 v
 T
 NULL

L

e

a)

T
 v
 T
 NULL

L

e

b)

Deletion of an element from the linked list: a) the list before
deleteing element e, b) the list after the deletion procedure.

Raimondas �iegis Lecture 3

How to delete an element from the list?

It is a simple task to delete the element e which is the next node
after the given element v .

T
 v
 T
 NULL

L

e

a)

T
 v
 T
 NULL

L

e

b)

Deletion of an element from the linked list: a) the list before
deleteing element e, b) the list after the deletion procedure.

Raimondas �iegis Lecture 3

It is much harder to delete from a singly linked list the element v
itself, since we don't know the address of the node stored before v .

Please propose your version of an algorithm how to implement this
operation avoiding iterations from the head element till we �nd v
and store the address of the previous node.

Raimondas �iegis Lecture 3

It is much harder to delete from a singly linked list the element v
itself, since we don't know the address of the node stored before v .

Please propose your version of an algorithm how to implement this
operation avoiding iterations from the head element till we �nd v
and store the address of the previous node.

Raimondas �iegis Lecture 3

Stack

Now we consider data structures, that are obtained from singly
linked lists by restricting a set of methods (operations) de�ned for
these new data structures.

Yes, we are not enlarging this set of methods, but reducing it.

A stack is the most important data structure in computers.

Raimondas �iegis Lecture 3

Stack

Now we consider data structures, that are obtained from singly
linked lists by restricting a set of methods (operations) de�ned for
these new data structures.

Yes, we are not enlarging this set of methods, but reducing it.

A stack is the most important data structure in computers.

Raimondas �iegis Lecture 3

Stack

Now we consider data structures, that are obtained from singly
linked lists by restricting a set of methods (operations) de�ned for
these new data structures.

Yes, we are not enlarging this set of methods, but reducing it.

A stack is the most important data structure in computers.

Raimondas �iegis Lecture 3

In computer science, a stack is an abstract data type that serves as
a collection of elements, with two main operations:

Push, which adds an element to the collection,

Pop, which removes the most recently added element that was not
yet removed.

The order in which an element added to or removed from a stack is
described as Last In, First Out, referred to by the acronym LIFO.

Raimondas �iegis Lecture 3

In computer science, a stack is an abstract data type that serves as
a collection of elements, with two main operations:

Push, which adds an element to the collection,

Pop, which removes the most recently added element that was not
yet removed.

The order in which an element added to or removed from a stack is
described as Last In, First Out, referred to by the acronym LIFO.

Raimondas �iegis Lecture 3

Similar to a stack of plates, adding or removing is only possible at
the top (Vikipedia).

Raimondas �iegis Lecture 3

If a stack is implemented by using singly linked lists, then elements
are

added (push() method) into a stack,

and removed (pop() method) from a stack

only at the head of a list.

We note, that it possible to implement a stack not only as a singly
linked list but also as a pointer to the top element in an array.

struct stack {
T data[N];

int top = 0;

}

In this case a stack has a bounded capacity, thus users must check
if it is full before adding a new element.

Raimondas �iegis Lecture 3

If a stack is implemented by using singly linked lists, then elements
are

added (push() method) into a stack,

and removed (pop() method) from a stack

only at the head of a list.

We note, that it possible to implement a stack not only as a singly
linked list but also as a pointer to the top element in an array.

struct stack {
T data[N];

int top = 0;

}

In this case a stack has a bounded capacity, thus users must check
if it is full before adding a new element.

Raimondas �iegis Lecture 3

This �gure shows a simple representation of a stack runtime with
push and pop operations: �rst letters A, S , U are added into a
stack, and then one letter is removed from it.

top = 0
 A

top = 1

A

S

top = 2

A

S

U

top = 3

A

S

top = 2

a) b) c) d) e)

Runtime (an array type implementation): a) an empty stack,
b) push(A), c) push(S), d) push(U), e) pop()

Raimondas �iegis Lecture 3

Post�x form of mathematical expressions

For writing complex mathematical expressions, we generally prefer
parentheses to make them more readable.

In computers, expressions with parentheses add unnecessary work
while computing.

In order to minimize the computational work, new notations have
been made.

Raimondas �iegis Lecture 3

Post�x form of mathematical expressions

For writing complex mathematical expressions, we generally prefer
parentheses to make them more readable.

In computers, expressions with parentheses add unnecessary work
while computing.

In order to minimize the computational work, new notations have
been made.

Raimondas �iegis Lecture 3

Post�x form of mathematical expressions

For writing complex mathematical expressions, we generally prefer
parentheses to make them more readable.

In computers, expressions with parentheses add unnecessary work
while computing.

In order to minimize the computational work, new notations have
been made.

Raimondas �iegis Lecture 3

In�x form:

The typical mathematical form of expression. In in�x form, an
operator is written in between two operands.

An in�x form of a sum of two numbers a and b is written as

a+ b.

Pre�x form:

In pre�x expression, an operator is written before its operands.

This notation is known as Polish notation. It is used in calculators.

A pre�x form of a sum of two numbers a and b is written as

+ab.

Raimondas �iegis Lecture 3

In�x form:

The typical mathematical form of expression. In in�x form, an
operator is written in between two operands.

An in�x form of a sum of two numbers a and b is written as

a+ b.

Pre�x form:

In pre�x expression, an operator is written before its operands.

This notation is known as Polish notation. It is used in calculators.

A pre�x form of a sum of two numbers a and b is written as

+ab.

Raimondas �iegis Lecture 3

In�x form:

The typical mathematical form of expression. In in�x form, an
operator is written in between two operands.

An in�x form of a sum of two numbers a and b is written as

a+ b.

Pre�x form:

In pre�x expression, an operator is written before its operands.

This notation is known as Polish notation. It is used in calculators.

A pre�x form of a sum of two numbers a and b is written as

+ab.

Raimondas �iegis Lecture 3

In�x form:

The typical mathematical form of expression. In in�x form, an
operator is written in between two operands.

An in�x form of a sum of two numbers a and b is written as

a+ b.

Pre�x form:

In pre�x expression, an operator is written before its operands.

This notation is known as Polish notation. It is used in calculators.

A pre�x form of a sum of two numbers a and b is written as

+ab.

Raimondas �iegis Lecture 3

Post�x form:

In post�x expression, an operator is written after its operands.

A post�x form of a sum of two numbers a and b is written as

ab+.

Raimondas �iegis Lecture 3

Post�x form:

In post�x expression, an operator is written after its operands.

A post�x form of a sum of two numbers a and b is written as

ab+.

Raimondas �iegis Lecture 3

Pre�x and post�x forms are very convenient, since parentheses are
not required to de�ne the priority of operations in any
mathematical expression.

Let's consider the following arithmetical expression a+ b ∗ c .

The post�x form is written as

a+ b ∗ c −→ a+ (b ∗ c) −→ a+ (b c ∗)

−→ a (b c ∗)+ −→ a b c ∗ + .

Now let's consider another arithmetical expression (a+ b) ∗ c .
No parentheses are required in its post�x form:

(a+ b) ∗ c −→ (a b+) ∗ c −→ (a b+) c ∗ −→ a b + c ∗ .

Raimondas �iegis Lecture 3

Pre�x and post�x forms are very convenient, since parentheses are
not required to de�ne the priority of operations in any
mathematical expression.

Let's consider the following arithmetical expression a+ b ∗ c .

The post�x form is written as

a+ b ∗ c −→ a+ (b ∗ c) −→ a+ (b c ∗)

−→ a (b c ∗)+ −→ a b c ∗ + .

Now let's consider another arithmetical expression (a+ b) ∗ c .
No parentheses are required in its post�x form:

(a+ b) ∗ c −→ (a b+) ∗ c −→ (a b+) c ∗ −→ a b + c ∗ .

Raimondas �iegis Lecture 3

Pre�x and post�x forms are very convenient, since parentheses are
not required to de�ne the priority of operations in any
mathematical expression.

Let's consider the following arithmetical expression a+ b ∗ c .

The post�x form is written as

a+ b ∗ c −→ a+ (b ∗ c) −→ a+ (b c ∗)

−→ a (b c ∗)+ −→ a b c ∗ + .

Now let's consider another arithmetical expression (a+ b) ∗ c .
No parentheses are required in its post�x form:

(a+ b) ∗ c −→ (a b+) ∗ c −→ (a b+) c ∗ −→ a b + c ∗ .

Raimondas �iegis Lecture 3

Pre�x and post�x forms are very convenient, since parentheses are
not required to de�ne the priority of operations in any
mathematical expression.

Let's consider the following arithmetical expression a+ b ∗ c .

The post�x form is written as

a+ b ∗ c −→ a+ (b ∗ c) −→ a+ (b c ∗)

−→ a (b c ∗)+ −→ a b c ∗ + .

Now let's consider another arithmetical expression (a+ b) ∗ c .
No parentheses are required in its post�x form:

(a+ b) ∗ c −→ (a b+) ∗ c −→ (a b+) c ∗ −→ a b + c ∗ .

Raimondas �iegis Lecture 3

The rank of an operator is called its precedence, and an operation
with a higher precedence is performed before operations with lower
precedence.
▶ The exponentiations are given precedence over both addition

and multiplication. We denote it as ∧:

ab = a ∧ b .

This operation is computed from right to left, thus a new
exponentiation operator has high precedence over previous
exponents:

a ∧ b ∧ c = a ∧ (b ∧ c) .

Let's calculate a simple example:

33
3

= 327.

Raimondas �iegis Lecture 3

The rank of an operator is called its precedence, and an operation
with a higher precedence is performed before operations with lower
precedence.
▶ The exponentiations are given precedence over both addition

and multiplication. We denote it as ∧:

ab = a ∧ b .

This operation is computed from right to left, thus a new
exponentiation operator has high precedence over previous
exponents:

a ∧ b ∧ c = a ∧ (b ∧ c) .

Let's calculate a simple example:

33
3

= 327.

Raimondas �iegis Lecture 3

The rank of an operator is called its precedence, and an operation
with a higher precedence is performed before operations with lower
precedence.
▶ The exponentiations are given precedence over both addition

and multiplication. We denote it as ∧:

ab = a ∧ b .

This operation is computed from right to left, thus a new
exponentiation operator has high precedence over previous
exponents:

a ∧ b ∧ c = a ∧ (b ∧ c) .

Let's calculate a simple example:

33
3

= 327.

Raimondas �iegis Lecture 3

The rank of an operator is called its precedence, and an operation
with a higher precedence is performed before operations with lower
precedence.
▶ The exponentiations are given precedence over both addition

and multiplication. We denote it as ∧:

ab = a ∧ b .

This operation is computed from right to left, thus a new
exponentiation operator has high precedence over previous
exponents:

a ∧ b ∧ c = a ∧ (b ∧ c) .

Let's calculate a simple example:

33
3

= 327.

Raimondas �iegis Lecture 3

▶ A lower precedence is given for multiplication and division.
Operations with the same precedence are computed from left
to right:

a ∗ b/c = (a ∗ b)/c .

▶ Addition and subtraction are granted the lowest precedence.
Operations with the same precedence are computed from left
to right:

a− b + c = (a− b) + c .

▶ Perentheses de�ne the highest precedence, thus a
mathematical expression inside perentheses is computed before
any arithmetical operation and the obtained result de�nes a
new operand.

Raimondas �iegis Lecture 3

▶ A lower precedence is given for multiplication and division.
Operations with the same precedence are computed from left
to right:

a ∗ b/c = (a ∗ b)/c .

▶ Addition and subtraction are granted the lowest precedence.
Operations with the same precedence are computed from left
to right:

a− b + c = (a− b) + c .

▶ Perentheses de�ne the highest precedence, thus a
mathematical expression inside perentheses is computed before
any arithmetical operation and the obtained result de�nes a
new operand.

Raimondas �iegis Lecture 3

▶ A lower precedence is given for multiplication and division.
Operations with the same precedence are computed from left
to right:

a ∗ b/c = (a ∗ b)/c .

▶ Addition and subtraction are granted the lowest precedence.
Operations with the same precedence are computed from left
to right:

a− b + c = (a− b) + c .

▶ Perentheses de�ne the highest precedence, thus a
mathematical expression inside perentheses is computed before
any arithmetical operation and the obtained result de�nes a
new operand.

Raimondas �iegis Lecture 3

How to covert In�x expression to Post�x form

1. Scan the in�x expression from left to right: Read the next
symbol s.

2. If the scanned character is an operand, put s in the post�x
expression (print it or put it into the second stack P).
3. Otherwise, do the following:

• If the precedence and associativity of the scanned operator
are greater than the precedence and associativity of
the operator in the stack [or the stack is empty, or the
stack contains a (], then push s in the stack of S .

Raimondas �iegis Lecture 3

How to covert In�x expression to Post�x form

1. Scan the in�x expression from left to right: Read the next
symbol s.
2. If the scanned character is an operand, put s in the post�x
expression (print it or put it into the second stack P).

3. Otherwise, do the following:
• If the precedence and associativity of the scanned operator
are greater than the precedence and associativity of
the operator in the stack [or the stack is empty, or the
stack contains a (], then push s in the stack of S .

Raimondas �iegis Lecture 3

How to covert In�x expression to Post�x form

1. Scan the in�x expression from left to right: Read the next
symbol s.
2. If the scanned character is an operand, put s in the post�x
expression (print it or put it into the second stack P).
3. Otherwise, do the following:

• If the precedence and associativity of the scanned operator
are greater than the precedence and associativity of
the operator in the stack [or the stack is empty, or the
stack contains a (], then push s in the stack of S .

Raimondas �iegis Lecture 3

Exponeniation operator ∧ is right associative and other
operators +, −, ∗, / are left-associative.
• Check especially for a condition when the operator at the
top of the stack and the scanned operator both are ∧.
In this condition, the precedence of the scanned operator
is higher due to its right associativity. So it will be
Pushed into the operator stack S .

• In all the other cases when the top of the operator stack is
the same as the scanned operator, then Pop the operator
from the stack because of left associativity due to which
the scanned operator has less precedence and print it.

Raimondas �iegis Lecture 3

• Else, Pop all the operators from the stack which are greater
than or equal to in precedence than that of the scanned
operator.

• After doing that Push the scanned operator to the stack.
(If you encounter parenthesis while popping then stop there
and Push the scanned operator into the operator stack.)

4. If the scanned character is a (, push it to the stack.
5. If the scanned character is a), pop the stack and output it until

a (is encountered, and discard both the parenthesis.
6. Repeat steps 2-5 until the in�x expression is fully scanned.
7. Once the scanning is over, Pop the stack and add the operators

in the post�x expression until it is not empty.

Raimondas �iegis Lecture 3

• Else, Pop all the operators from the stack which are greater
than or equal to in precedence than that of the scanned
operator.

• After doing that Push the scanned operator to the stack.
(If you encounter parenthesis while popping then stop there
and Push the scanned operator into the operator stack.)

4. If the scanned character is a (, push it to the stack.

5. If the scanned character is a), pop the stack and output it until
a (is encountered, and discard both the parenthesis.

6. Repeat steps 2-5 until the in�x expression is fully scanned.
7. Once the scanning is over, Pop the stack and add the operators

in the post�x expression until it is not empty.

Raimondas �iegis Lecture 3

• Else, Pop all the operators from the stack which are greater
than or equal to in precedence than that of the scanned
operator.

• After doing that Push the scanned operator to the stack.
(If you encounter parenthesis while popping then stop there
and Push the scanned operator into the operator stack.)

4. If the scanned character is a (, push it to the stack.
5. If the scanned character is a), pop the stack and output it until

a (is encountered, and discard both the parenthesis.

6. Repeat steps 2-5 until the in�x expression is fully scanned.
7. Once the scanning is over, Pop the stack and add the operators

in the post�x expression until it is not empty.

Raimondas �iegis Lecture 3

• Else, Pop all the operators from the stack which are greater
than or equal to in precedence than that of the scanned
operator.

• After doing that Push the scanned operator to the stack.
(If you encounter parenthesis while popping then stop there
and Push the scanned operator into the operator stack.)

4. If the scanned character is a (, push it to the stack.
5. If the scanned character is a), pop the stack and output it until

a (is encountered, and discard both the parenthesis.
6. Repeat steps 2-5 until the in�x expression is fully scanned.

7. Once the scanning is over, Pop the stack and add the operators
in the post�x expression until it is not empty.

Raimondas �iegis Lecture 3

• Else, Pop all the operators from the stack which are greater
than or equal to in precedence than that of the scanned
operator.

• After doing that Push the scanned operator to the stack.
(If you encounter parenthesis while popping then stop there
and Push the scanned operator into the operator stack.)

4. If the scanned character is a (, push it to the stack.
5. If the scanned character is a), pop the stack and output it until

a (is encountered, and discard both the parenthesis.
6. Repeat steps 2-5 until the in�x expression is fully scanned.
7. Once the scanning is over, Pop the stack and add the operators

in the post�x expression until it is not empty.

Raimondas �iegis Lecture 3

Let us consider In�x arithmetical expression

a+ (b ∗ c + d) ∧ f .

By using the presented algorithm we convert it to the Post�x form.

In�x Stack Post�x

[
 [

a
 [
 a

+
 [
 +

(
 [
 +
 (

b
 [
 +
 (
 b

*
 [
 +
 (
 *

c
 [
 +
 (
 *
 c

Raimondas �iegis Lecture 3

Let us consider In�x arithmetical expression

a+ (b ∗ c + d) ∧ f .

By using the presented algorithm we convert it to the Post�x form.

In�x Stack Post�x

[
 [

a
 [
 a

+
 [
 +

(
 [
 +
 (

b
 [
 +
 (
 b

*
 [
 +
 (
 *

c
 [
 +
 (
 *
 c

Raimondas �iegis Lecture 3

Nagrin
ejame in�x aritmetin¦ i²rai²k¡ a+ (b ∗ c + d) ∧ f .

In�x Stack Post�x

c
 [
 +
 (
 *
 c

+
 [
 +
 (
 *

[
 +
 (
 +

d
 [
 +
 (
 +
 d

)
 [
 +
 +

^
 [
 +
 ^

f
 [
 +
 ^
 f

]
 [
 +
 ^

[
 +

Raimondas �iegis Lecture 3

Thus the post�x form of the in�x arithmetical expression
a+ (b ∗ c + d) ∧ f is written as

abc ∗ d + f ∧+ .

It is interesting to note that in order to compute a value of the
post�x form we use stacks again.

Raimondas �iegis Lecture 3

Thus the post�x form of the in�x arithmetical expression
a+ (b ∗ c + d) ∧ f is written as

abc ∗ d + f ∧+ .

It is interesting to note that in order to compute a value of the
post�x form we use stacks again.

Raimondas �iegis Lecture 3

