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Heap

Heap is a specialized binary tree-based data structure that satis�es
the following conditions:

1. A heap is an almost complete binary tree: the �rst element is
stored in the root.

Then the next level is �lled from the left to the right.

The new level is started only when the previous level is fully
�lled.

2. A heap can be regarded as being partially ordered. Children of
each vertex are not larger than the vertex itself.

It is easy to show that the highest priority element is always stored
at the root.
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Since a heap is a complete binary tree, it is very convenient to store
its data in an array.

An example of a heap is given in the following �gure:

45


64


30


30


18
40
36


12
 25


1


2
 3


4
 5
 6
 7


8
 9

64
 45
 30
 36
 40
 30
 18
 12
 25


1
 2
 3
 4
 5
 6
 7
 8
 9


a) b)

Given a node ai at index i , its children are at indices 2i and 2i + 1
(elements a2i and a2i+1).

A parent of vertex ai is at index j = ⌊i/2⌋ (element aj).

This simple indexing scheme makes it e�cient to move "up" or
"down" the binary tree.
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Construction of a heap.

We have data e1, e2, . . . , eN . Initially, these elements are stored in
array A without any changes.

Balancing of a heap is done by sift-down operation (swapping
elements which are out of order).

All leaves of the binary tree are already ordered. Such elements are
at indices (N2 + 1), . . . ,N.
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Then we take elements N
2 ,

N
2 − 1, . . . , 1 and apply recursive

checking of the ordering condition.

If this condition is not satis�ed sift-down transformation is used to
restore heap condition, i.e. the given element is swapped with its
largest child.

This checking step is continued in a new place till heap condition is
satis�ed (recursion technique).
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Heap algorithm

MakeHeap ()
begin

(1) for ( i=1; i ⩽ N; i++ ) do
(2) ai = ei ;

end do

(3) for ( i=N/2; i > 0; i - - ) do
(4) HeapDownOrder ( i, N );

end do

end MakeHeap
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This function is iterative, since at each step only one sub-tree is
considered.

HeapDownOrder ( p, N )
begin

(1) i=p; j = 2i;
(2) while ( j ⩽ N ) do
(3) k = j;
(4) if

(
(j+1) ⩽ N

)
then

(5) if ( aj+1 > aj ) k = j+1;
(6) if ( ai < ak ) then
(7) swap (ai , ak);
(8) i = k; j= 2i;
(9) else

(10) j = N+1;
end HeapDownOrder
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Make a heap from array

A = (10, 37, 18, 13, 22, 14, 25, 10, 12, 28).
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Figure: Construction of heap.
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Now we estimate the complexity of this algorithm.

Since a heap is balanced binary tree, its height is equal to logN.

For each activation of HeapDownOrder algorithm the number of
comparisons is not larger than 2 logN and the number of swappings
is not larger than logN.
Thus total costs can be bounded from above as

L(N) ≤ N logN, S(N) ≤ 1
2
N logN .
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