
Binary tree

Raimondas �iegis

Matematinio modeliavimo katedra, e-pa²tas: rc@vgtu.lt

Spalio 16 d., 2023

Raimondas �iegis Lecture 4

Binary tree

First we present a general de�nition of the binary tree data
structure.

Let's assume that a set D of elements is given.

A set of binary trees is recursively de�ned as:

▶ the empty set is a binary tree;
▶ one vertex a ∈ D is a binary tree;

Raimondas �iegis Lecture 4

Binary tree

First we present a general de�nition of the binary tree data
structure.

Let's assume that a set D of elements is given.

A set of binary trees is recursively de�ned as:

▶ the empty set is a binary tree;
▶ one vertex a ∈ D is a binary tree;

Raimondas �iegis Lecture 4

Binary tree

First we present a general de�nition of the binary tree data
structure.

Let's assume that a set D of elements is given.

A set of binary trees is recursively de�ned as:
▶ the empty set is a binary tree;

▶ one vertex a ∈ D is a binary tree;

Raimondas �iegis Lecture 4

Binary tree

First we present a general de�nition of the binary tree data
structure.

Let's assume that a set D of elements is given.

A set of binary trees is recursively de�ned as:
▶ the empty set is a binary tree;
▶ one vertex a ∈ D is a binary tree;

Raimondas �iegis Lecture 4

▶ if L and R are binary trees, then denote by T := L ∗ R the
binary tree obtained by adding an element a ∈ D connected to
the left to L and to the right to R , by adding edges when
these sub-trees are non-empty (see a) part of the �gure).

Then a is the root of a tree, L and R are left and right
sub-trees of the tree T .

a

L
 R

b

a

f

c

e
d

g

a) b)

An example of a binary tree.

Raimondas �iegis Lecture 4

We denote vertices of tree T as vj ∈ V .

If the vertex vj is connected to vk by the edge ejk = (vj , vk) ∈ E ,
then the vertex vk is called a child of vj , and vj is called a parent of
vk .

A vertex of a tree is called a leaf if it has no children.

The level of a vertex vj in a tree T is the length of the unique path
from the root to this vertex.

The height of a rooted tree is the maximum of the levels of vertices.

We can use a recursive de�nition. The level of the root vertex is
equal to zero.
Then the level of kth-level vertex's children is equal to (k + 1).

Raimondas �iegis Lecture 4

We denote vertices of tree T as vj ∈ V .

If the vertex vj is connected to vk by the edge ejk = (vj , vk) ∈ E ,
then the vertex vk is called a child of vj , and vj is called a parent of
vk .

A vertex of a tree is called a leaf if it has no children.

The level of a vertex vj in a tree T is the length of the unique path
from the root to this vertex.

The height of a rooted tree is the maximum of the levels of vertices.

We can use a recursive de�nition. The level of the root vertex is
equal to zero.
Then the level of kth-level vertex's children is equal to (k + 1).

Raimondas �iegis Lecture 4

We denote vertices of tree T as vj ∈ V .

If the vertex vj is connected to vk by the edge ejk = (vj , vk) ∈ E ,
then the vertex vk is called a child of vj , and vj is called a parent of
vk .

A vertex of a tree is called a leaf if it has no children.

The level of a vertex vj in a tree T is the length of the unique path
from the root to this vertex.

The height of a rooted tree is the maximum of the levels of vertices.

We can use a recursive de�nition. The level of the root vertex is
equal to zero.
Then the level of kth-level vertex's children is equal to (k + 1).

Raimondas �iegis Lecture 4

We denote vertices of tree T as vj ∈ V .

If the vertex vj is connected to vk by the edge ejk = (vj , vk) ∈ E ,
then the vertex vk is called a child of vj , and vj is called a parent of
vk .

A vertex of a tree is called a leaf if it has no children.

The level of a vertex vj in a tree T is the length of the unique path
from the root to this vertex.

The height of a rooted tree is the maximum of the levels of vertices.

We can use a recursive de�nition. The level of the root vertex is
equal to zero.
Then the level of kth-level vertex's children is equal to (k + 1).

Raimondas �iegis Lecture 4

We denote vertices of tree T as vj ∈ V .

If the vertex vj is connected to vk by the edge ejk = (vj , vk) ∈ E ,
then the vertex vk is called a child of vj , and vj is called a parent of
vk .

A vertex of a tree is called a leaf if it has no children.

The level of a vertex vj in a tree T is the length of the unique path
from the root to this vertex.

The height of a rooted tree is the maximum of the levels of vertices.

We can use a recursive de�nition. The level of the root vertex is
equal to zero.
Then the level of kth-level vertex's children is equal to (k + 1).

Raimondas �iegis Lecture 4

We denote vertices of tree T as vj ∈ V .

If the vertex vj is connected to vk by the edge ejk = (vj , vk) ∈ E ,
then the vertex vk is called a child of vj , and vj is called a parent of
vk .

A vertex of a tree is called a leaf if it has no children.

The level of a vertex vj in a tree T is the length of the unique path
from the root to this vertex.

The height of a rooted tree is the maximum of the levels of vertices.

We can use a recursive de�nition. The level of the root vertex is
equal to zero.
Then the level of kth-level vertex's children is equal to (k + 1).

Raimondas �iegis Lecture 4

Family tree

A family tree, also called a genealogy chart, is a chart representing
family relationships in a conventional tree structure (parents,
grandparents and great grandparents).

M

P

M

T

T
M
 T
 seneliai

proseneliai

Raimondas �iegis Lecture 4

In�x form of mathematical expression saved in a binary tree

Let's consider the following mathematical expression

(a− b ∗ c) ∗ (d + e/f).

We put it into a binary tree

-

*

d

+

*
a
 /

b
 c
 e
 f

Raimondas �iegis Lecture 4

In�x form of mathematical expression saved in a binary tree

Let's consider the following mathematical expression

(a− b ∗ c) ∗ (d + e/f).

We put it into a binary tree

-

*

d

+

*
a
 /

b
 c
 e
 f

Raimondas �iegis Lecture 4

First, we de�ne a basic node (element), it has a value �eld as well
as two links (pointers), they point to the left and right sub-trees.

struct node {
T data;

node ∗ left;

node ∗ right;

}

T

L
 R

Raimondas �iegis Lecture 4

First, we de�ne a basic node (element), it has a value �eld as well
as two links (pointers), they point to the left and right sub-trees.

struct node {
T data;

node ∗ left;

node ∗ right;

}

T

L
 R

Raimondas �iegis Lecture 4

A binary tree is a nonlinear structure of nodes, when one node is
connected to two or less nodes.

a

c
b

d
 NULL

NULL
NULL

NULL
 NULL

Raimondas �iegis Lecture 4

For many important applications it is convenient to add one
additional �eld and one pointer to the structire of the basic node.

This new �eld is used to store a key.

An additional link points to the parent of the node.

struct node {
T data;

int key ;

node ∗ left;

node ∗ right;

node ∗ p;

}

Raimondas �iegis Lecture 4

As for all data structures we de�ne the following main methods:

a) Insert a new node;

b) Remove a node from the tree;

c) Check if a node with a given key exists;

In the case of binary trees we add two more methods, they are very
useful in inplementation of search trees:

d) MINIMUM � �nds a node with a smallest key value;

e) SUCCESSOR � �nds a next element in a sorted set of elements.

Raimondas �iegis Lecture 4

As for all data structures we de�ne the following main methods:

a) Insert a new node;

b) Remove a node from the tree;

c) Check if a node with a given key exists;

In the case of binary trees we add two more methods, they are very
useful in inplementation of search trees:

d) MINIMUM � �nds a node with a smallest key value;

e) SUCCESSOR � �nds a next element in a sorted set of elements.

Raimondas �iegis Lecture 4

A fully balanced binary tree

It is a general rule that a complexity of most important algorithms
depends oh the height of a tree.

Thus our aim is to control/minimize the growth of the height,
when the total number of elements is increasing.

It is important to regulate the construction of left and right
subtrees, when new elements are added or removed.

Raimondas �iegis Lecture 4

A fully balanced binary tree

It is a general rule that a complexity of most important algorithms
depends oh the height of a tree.

Thus our aim is to control/minimize the growth of the height,
when the total number of elements is increasing.

It is important to regulate the construction of left and right
subtrees, when new elements are added or removed.

Raimondas �iegis Lecture 4

De�nition
A tree is called a fully balanced if for any vertex total numbers of
elements in the right and left subtrees di�er by at most one.

Raimondas �iegis Lecture 4

b

a

c

d

b

a

e

c

d

a) b)

Fully balanced binary trees: a) N = 4, b) N = 5

Raimondas �iegis Lecture 4

Next we present a recursive algorithm for construction of
a fully balanced binary tree.

node ∗ balancedTree(int N){
y = NIL;

if (N == 0) return (NIL);

nL = N/2; nR = N − nL− 1;

x = read();

node ∗ Node = new(node);

Node.data = x ; Node.key = key ;

Node.left = balancedTree(nL);

Node.right = balancedTree(nR);

Node.p = y , y = Node;

return (Node);

}

Raimondas �iegis Lecture 4

A task to visit all vertices of a binary tree

We consider three important algorithms, they de�ne di�erent orders
how vertices of left and right sub-trees are visited.

Again all three algoritms are recursive.

If a mathematical expression is stored in a tree, then these
algorithms can print the pre�x, in�x and post�x forms of the given
mathematical expression.

Raimondas �iegis Lecture 4

A task to visit all vertices of a binary tree

We consider three important algorithms, they de�ne di�erent orders
how vertices of left and right sub-trees are visited.

Again all three algoritms are recursive.

If a mathematical expression is stored in a tree, then these
algorithms can print the pre�x, in�x and post�x forms of the given
mathematical expression.

Raimondas �iegis Lecture 4

A task to visit all vertices of a binary tree

We consider three important algorithms, they de�ne di�erent orders
how vertices of left and right sub-trees are visited.

Again all three algoritms are recursive.

If a mathematical expression is stored in a tree, then these
algorithms can print the pre�x, in�x and post�x forms of the given
mathematical expression.

Raimondas �iegis Lecture 4

Pre�x algorithm

First we visit a root, then vertices of a left sub-tree and �nally a
right-subtree.

preOrder (node* v)
begin

(1) if (v ̸= NIL) then
(2) P(v);
(3) preOrder(v.left);
(4) preOrder(v.right);

end if

end preOrder

Raimondas �iegis Lecture 4

In�x algorithm

First we visit vertices of a left sub-tree, then a root, and �nally
vertices of a right-subtree.

inOrder (node* v)
begin

(1) if (v ̸= NIL) then
(2) inOrder(v.left);
(3) P(v);
(4) inOrder(v.right);

end if

end inOrder

Raimondas �iegis Lecture 4

Post�x algorithm

First we visit vertices of a left sub-tree, then a right-subtree and
�nally a root.

postOrder (node* v)
begin

(1) if (v ̸= NIL) then
(2) postOrder(v.left);
(3) postOrder(v.right);
(4) P(v);

end if

end postOrder

Raimondas �iegis Lecture 4

Let us print three di�erent forms of the mathematical expression

(a− b ∗ c) ∗ (d + e/f).

First we write it into the binary tree:

-

*

d

+

*
a
 /

b
 c
 e
 f

Raimondas �iegis Lecture 4

Let us print three di�erent forms of the mathematical expression

(a− b ∗ c) ∗ (d + e/f).

First we write it into the binary tree:

-

*

d

+

*
a
 /

b
 c
 e
 f

Raimondas �iegis Lecture 4

(a− b ∗ c) ∗ (d + e/f).

Pre�x: ∗ − a ∗ bc + d/ef ,

In�x: a− b ∗ c ∗ d + e/f ,

Post�x: abc ∗ −def /+ ∗.

Raimondas �iegis Lecture 4

(a− b ∗ c) ∗ (d + e/f).

Pre�x: ∗ − a ∗ bc + d/ef ,

In�x: a− b ∗ c ∗ d + e/f ,

Post�x: abc ∗ −def /+ ∗.

Raimondas �iegis Lecture 4

(a− b ∗ c) ∗ (d + e/f).

Pre�x: ∗ − a ∗ bc + d/ef ,

In�x: a− b ∗ c ∗ d + e/f ,

Post�x: abc ∗ −def /+ ∗.

Raimondas �iegis Lecture 4

(a− b ∗ c) ∗ (d + e/f).

Pre�x: ∗ − a ∗ bc + d/ef ,

In�x: a− b ∗ c ∗ d + e/f ,

Post�x: abc ∗ −def /+ ∗.

Raimondas �iegis Lecture 4

Binary search tree

Data sorting and searching are probably the most important
operation in data analysis.

Binary search trees are helping to solve these problems e�ciently.

De�nition. A binary search tree is a data structure with the key of
each internal node being greater than all the keys in the respective
node's left subtree and equal or less than the ones in its right
subtree.

3

6

8

9

5
2

4
 7

11

Raimondas �iegis Lecture 4

Binary search tree

Data sorting and searching are probably the most important
operation in data analysis.

Binary search trees are helping to solve these problems e�ciently.

De�nition. A binary search tree is a data structure with the key of
each internal node being greater than all the keys in the respective
node's left subtree and equal or less than the ones in its right
subtree.

3

6

8

9

5
2

4
 7

11

Raimondas �iegis Lecture 4

Binary search tree

Data sorting and searching are probably the most important
operation in data analysis.

Binary search trees are helping to solve these problems e�ciently.

De�nition. A binary search tree is a data structure with the key of
each internal node being greater than all the keys in the respective
node's left subtree and equal or less than the ones in its right
subtree.

3

6

8

9

5
2

4
 7

11

Raimondas �iegis Lecture 4

Let us see how binary search trees solve e�ciently some important
problems.

Apply InOrder(T.root) method to visit all vertices of a binary
search tree T . What conclusion follows from such an experiment?

Yes, we print elements in a sorted order, starting with the smallest
one and moving to the element with the largest key.

Try to prove that this result is valid for any sorted tree.

Raimondas �iegis Lecture 4

Let us see how binary search trees solve e�ciently some important
problems.

Apply InOrder(T.root) method to visit all vertices of a binary
search tree T . What conclusion follows from such an experiment?

Yes, we print elements in a sorted order, starting with the smallest
one and moving to the element with the largest key.

Try to prove that this result is valid for any sorted tree.

Raimondas �iegis Lecture 4

Let us see how binary search trees solve e�ciently some important
problems.

Apply InOrder(T.root) method to visit all vertices of a binary
search tree T . What conclusion follows from such an experiment?

Yes, we print elements in a sorted order, starting with the smallest
one and moving to the element with the largest key.

Try to prove that this result is valid for any sorted tree.

Raimondas �iegis Lecture 4

Let us see how binary search trees solve e�ciently some important
problems.

Apply InOrder(T.root) method to visit all vertices of a binary
search tree T . What conclusion follows from such an experiment?

Yes, we print elements in a sorted order, starting with the smallest
one and moving to the element with the largest key.

Try to prove that this result is valid for any sorted tree.

Raimondas �iegis Lecture 4

Next we solve a problem, which is very popular in applications.

In a binary search tree we want to �nd an element with a key k .

If such element do not exist, then the procedure returns a link to
NIL.

Our idea

Start searching from the root node.

Then if the data is less than the key value, search for the element
in the left subtree.

Otherwise, search for the element in the right subtree.

Follow the same algorithm for each node.

Raimondas �iegis Lecture 4

Next we solve a problem, which is very popular in applications.

In a binary search tree we want to �nd an element with a key k .

If such element do not exist, then the procedure returns a link to
NIL.

Our idea

Start searching from the root node.

Then if the data is less than the key value, search for the element
in the left subtree.

Otherwise, search for the element in the right subtree.

Follow the same algorithm for each node.

Raimondas �iegis Lecture 4

Next we solve a problem, which is very popular in applications.

In a binary search tree we want to �nd an element with a key k .

If such element do not exist, then the procedure returns a link to
NIL.

Our idea

Start searching from the root node.

Then if the data is less than the key value, search for the element
in the left subtree.

Otherwise, search for the element in the right subtree.

Follow the same algorithm for each node.

Raimondas �iegis Lecture 4

node ∗ Tree_Search(node ∗ x , int k){
if (x == NILL || k == x .key) return x ;

if (k < x .key) return Tree_Search(x .left, k);

else

return Tree_Search(x .right, k);

}

The structure of this new algorithm is similar to algorithms used to
visit all nodes of any binary tree.

In both cases algorithms are recursive.

Still for the search algorithm at each step we select to visit only one
subtree. The second subtree is never visited.

Therefore the complexity of the search algorithm depends only on
the height of a binary tree O(h).

Raimondas �iegis Lecture 4

node ∗ Tree_Search(node ∗ x , int k){
if (x == NILL || k == x .key) return x ;

if (k < x .key) return Tree_Search(x .left, k);

else

return Tree_Search(x .right, k);

}

The structure of this new algorithm is similar to algorithms used to
visit all nodes of any binary tree.

In both cases algorithms are recursive.

Still for the search algorithm at each step we select to visit only one
subtree. The second subtree is never visited.

Therefore the complexity of the search algorithm depends only on
the height of a binary tree O(h).

Raimondas �iegis Lecture 4

node ∗ Tree_Search(node ∗ x , int k){
if (x == NILL || k == x .key) return x ;

if (k < x .key) return Tree_Search(x .left, k);

else

return Tree_Search(x .right, k);

}

The structure of this new algorithm is similar to algorithms used to
visit all nodes of any binary tree.

In both cases algorithms are recursive.

Still for the search algorithm at each step we select to visit only one
subtree. The second subtree is never visited.

Therefore the complexity of the search algorithm depends only on
the height of a binary tree O(h).

Raimondas �iegis Lecture 4

node ∗ Tree_Search(node ∗ x , int k){
if (x == NILL || k == x .key) return x ;

if (k < x .key) return Tree_Search(x .left, k);

else

return Tree_Search(x .right, k);

}

The structure of this new algorithm is similar to algorithms used to
visit all nodes of any binary tree.

In both cases algorithms are recursive.

Still for the search algorithm at each step we select to visit only one
subtree. The second subtree is never visited.

Therefore the complexity of the search algorithm depends only on
the height of a binary tree O(h).

Raimondas �iegis Lecture 4

We present also an iterative version of the search algorithm. In
many cases it can be more e�cient than the recursive version.

node ∗ Tree_Iterative_Search(node ∗ x , int k){
while (x ̸= NILL and k ̸= x .key)

if (k < x .key)

x = x .left;

else

x = x .right;

return x ;

}

Raimondas �iegis Lecture 4

3

6

8

9

5
2

4
 7

11

Searching for a node with a key value 7. Search algorithm traverses
the tree "in-depth", choosing an appropriate way (a left or right
subtree).

Raimondas �iegis Lecture 4

Test Problems

Make iterative algorithms to implement the following methods of
binary search trees:

Tree_Minimum_Search(node* T.root),

Tree_Maximum_Search(node* T.root).

Do we need to compare keys of elements?

Raimondas �iegis Lecture 4

Test Problems

Make iterative algorithms to implement the following methods of
binary search trees:

Tree_Minimum_Search(node* T.root),

Tree_Maximum_Search(node* T.root).

Do we need to compare keys of elements?

Raimondas �iegis Lecture 4

Insert a new node

We want to insert into binary search tree T a new vertex v . The
initial values of all �elds are the following:

v .key = k , v .left = NIL, v .right = NIL, v .p = NIL.

We should guarantee that after insertion the tree T remains to be
a binary search tree.

A given insertion algorithm traverses the tree "in-depth", choosing
an appropriate way (a left or right subtree) till a NIL pointer is
reached.

Then a new leaf node is added to the tree T at this link.

If the tree T is empty, then this new vertex bacomes a root of T .

Raimondas �iegis Lecture 4

Insert a new node

We want to insert into binary search tree T a new vertex v . The
initial values of all �elds are the following:

v .key = k , v .left = NIL, v .right = NIL, v .p = NIL.

We should guarantee that after insertion the tree T remains to be
a binary search tree.

A given insertion algorithm traverses the tree "in-depth", choosing
an appropriate way (a left or right subtree) till a NIL pointer is
reached.

Then a new leaf node is added to the tree T at this link.

If the tree T is empty, then this new vertex bacomes a root of T .

Raimondas �iegis Lecture 4

Insert a new node

We want to insert into binary search tree T a new vertex v . The
initial values of all �elds are the following:

v .key = k , v .left = NIL, v .right = NIL, v .p = NIL.

We should guarantee that after insertion the tree T remains to be
a binary search tree.

A given insertion algorithm traverses the tree "in-depth", choosing
an appropriate way (a left or right subtree) till a NIL pointer is
reached.

Then a new leaf node is added to the tree T at this link.

If the tree T is empty, then this new vertex bacomes a root of T .

Raimondas �iegis Lecture 4

Insert a new node

We want to insert into binary search tree T a new vertex v . The
initial values of all �elds are the following:

v .key = k , v .left = NIL, v .right = NIL, v .p = NIL.

We should guarantee that after insertion the tree T remains to be
a binary search tree.

A given insertion algorithm traverses the tree "in-depth", choosing
an appropriate way (a left or right subtree) till a NIL pointer is
reached.

Then a new leaf node is added to the tree T at this link.

If the tree T is empty, then this new vertex bacomes a root of T .

Raimondas �iegis Lecture 4

insert (tree T, node* v)

(1) y = NIL, x = T.root
(2) while (x ̸= NIL)
(3) y = x
(4) if (v.key < x.key)
(5) x = x.left
(6) else x = x.right
(7) v.p = y
(8) if (y == NIL)
(9) T.root = v
(9) elseif (v.key < y.key)
(10) y.left = v
(11) else y.right = v

Raimondas �iegis Lecture 4

Example 1

Insert the given elements into a new binary search tree:

6, 9, 3, 5, 11, 4, 8, 2, 7.

3

6

8

9

5
2

4
 7

11

Raimondas �iegis Lecture 4

Delete a vertx

It is more di�cult to delete a vertex from T , since the obtained
tree should remain a binary search tree.

Raimondas �iegis Lecture 4

We consider three separate cases:

1. A leaf node v should be deleted. Then an appropriate link of v
parent w = v .p gets the value NIL:

w = v .p

if (T .root == v) T .root = NIL

else

if (v .key < w .key) w .left = NIL

else w .right = NIL

delete(v)

Raimondas �iegis Lecture 4

We consider three separate cases:

1. A leaf node v should be deleted. Then an appropriate link of v
parent w = v .p gets the value NIL:

w = v .p

if (T .root == v) T .root = NIL

else

if (v .key < w .key) w .left = NIL

else w .right = NIL

delete(v)

Raimondas �iegis Lecture 4

2. We want to delete a vertex v , which has one child. Then an
appropriate link of the parent w = v .p points to the child of v :

w = v .p

if (v .left == NIL) c = v .right

else c = v .left

if (T .root == v) T .root = c

else

c .p = w

if (v .key < w .key) w .left = c

else w .right = c

delete(v)

Raimondas �iegis Lecture 4

3. We want to delete a vertex v , which has two children.

The �rst algorithm �nds the smallest element in the right sub-tree
of v :

node ∗ Tree_Right_Minimum(node ∗ x){
y = x .right

s = y

while (y ̸= NILL)

s = y

y = y .left

return s

}

Raimondas �iegis Lecture 4

3. We want to delete a vertex v , which has two children.

The �rst algorithm �nds the smallest element in the right sub-tree
of v :

node ∗ Tree_Right_Minimum(node ∗ x){
y = x .right

s = y

while (y ̸= NILL)

s = y

y = y .left

return s

}

Raimondas �iegis Lecture 4

Then a vertex v is deleted by applying the following algorithm (�rst
we check if the smallest element de�nes the right side child of v):

s = Tree_Right_Minimum(v)

w = v .p, z = s.p

if (z ̸= v)

z .left = s.right

s.right = v .right

s.left = v .left

if (v .key < w .key)

w .left = s

else

w .right = s

delete(v)

Raimondas �iegis Lecture 4

Let us delete a leaf vertex v .key = 1.

3

8

9

11

6
1

7
 10

14

12
 15

13

3

8

9

11

6
1

7
 10

14

12
 15

13

Raimondas �iegis Lecture 4

Next we delete a vertex which has one child v .key = 6.

3

8

9

11

6
1

7
 10

14

12
 15

13

3

8

9

11

7
6

10

14

12
 15

13

Raimondas �iegis Lecture 4

Finally we delete a vertex with two children v .key = 11.

3

8

9

11

6
1

7
 10

14

12
 15

13

3

8

9

12

6

7
 10

14

13
 15

11

Raimondas �iegis Lecture 4

