
Sorting algorithms

Raimondas �iegis

Matematinio modeliavimo katedra, e-pa²tas: rc@vgtu.lt

October 30 d., 2023

Raimondas �iegis Lecture 5



Main Problems

As it was noted in previous lectures, e�cient sorting is important
for optimizing the e�ciency of other algorithms such as search.

We intend to study most popular sorting algorithms and analyse
their complexity (mainly average and worst cases).

There are quite many sorting algorithms and in applications it is
important to select the one best �tted for the speci�c problem.

Raimondas �iegis Lecture 5



Main Problems

As it was noted in previous lectures, e�cient sorting is important
for optimizing the e�ciency of other algorithms such as search.

We intend to study most popular sorting algorithms and analyse
their complexity (mainly average and worst cases).

There are quite many sorting algorithms and in applications it is
important to select the one best �tted for the speci�c problem.

Raimondas �iegis Lecture 5



Main Problems

As it was noted in previous lectures, e�cient sorting is important
for optimizing the e�ciency of other algorithms such as search.

We intend to study most popular sorting algorithms and analyse
their complexity (mainly average and worst cases).

There are quite many sorting algorithms and in applications it is
important to select the one best �tted for the speci�c problem.

Raimondas �iegis Lecture 5



Problem formulation

Let us consider a set of elements (data) A = (a1, a2, . . . , aN).

We assume that it is possible to compare elements, i.e. to check if
the following estimate is valid

ai < aj , if i ̸= j .

The output A
′
= (a

′
1, a

′
2, . . . , a

′
N) of any sorting algorithm must

satisfy two conditions:

1. The output is in monotonic order (each element is no
smaller/larger than the previous element, according to the required
order)

a
′
i ≤ a

′
i+1, if i = 0, 1, . . . ,N − 1.

2. The output is a permutation (a reordering, yet retaining all of
the original elements) of the input.

Raimondas �iegis Lecture 5



Problem formulation

Let us consider a set of elements (data) A = (a1, a2, . . . , aN).

We assume that it is possible to compare elements, i.e. to check if
the following estimate is valid

ai < aj , if i ̸= j .

The output A
′
= (a

′
1, a

′
2, . . . , a

′
N) of any sorting algorithm must

satisfy two conditions:

1. The output is in monotonic order (each element is no
smaller/larger than the previous element, according to the required
order)

a
′
i ≤ a

′
i+1, if i = 0, 1, . . . ,N − 1.

2. The output is a permutation (a reordering, yet retaining all of
the original elements) of the input.

Raimondas �iegis Lecture 5



Problem formulation

Let us consider a set of elements (data) A = (a1, a2, . . . , aN).

We assume that it is possible to compare elements, i.e. to check if
the following estimate is valid

ai < aj , if i ̸= j .

The output A
′
= (a

′
1, a

′
2, . . . , a

′
N) of any sorting algorithm must

satisfy two conditions:

1. The output is in monotonic order (each element is no
smaller/larger than the previous element, according to the required
order)

a
′
i ≤ a

′
i+1, if i = 0, 1, . . . ,N − 1.

2. The output is a permutation (a reordering, yet retaining all of
the original elements) of the input.

Raimondas �iegis Lecture 5



Complexity of comparison sorting algorithms

In this lecture we consider only comparison based algorithms, when
it is possible

to compare two elements of A ,

to swap (permute) two elements.

Such algorithms can be presented as binary tree data structure.

Each vertex denotes a comparison operation of two elements, and
its leaves de�ne a result of this comparison.

Raimondas �iegis Lecture 5



Complexity of comparison sorting algorithms

In this lecture we consider only comparison based algorithms, when
it is possible

to compare two elements of A ,

to swap (permute) two elements.

Such algorithms can be presented as binary tree data structure.

Each vertex denotes a comparison operation of two elements, and
its leaves de�ne a result of this comparison.

Raimondas �iegis Lecture 5



Complexity of comparison sorting algorithms

In this lecture we consider only comparison based algorithms, when
it is possible

to compare two elements of A ,

to swap (permute) two elements.

Such algorithms can be presented as binary tree data structure.

Each vertex denotes a comparison operation of two elements, and
its leaves de�ne a result of this comparison.

Raimondas �iegis Lecture 5



Let us consider a simple example, when we need to sort three
elements A = (a, b, c).

The sorting process and all possible sorted sets are presented in the
�gure.

a < b


b < c
 a < c


a < b < c
 a < c
 b < a < c
 b < c


b < c < a
 c < b < a
a < c < b
 c < a <  b


T


T
T
 N


N


T


N


T
 N
 N


T denotes an edge, when the condition is "true" and N otherwise.

Raimondas �iegis Lecture 5



Let us consider a simple example, when we need to sort three
elements A = (a, b, c).

The sorting process and all possible sorted sets are presented in the
�gure.

a < b


b < c
 a < c


a < b < c
 a < c
 b < a < c
 b < c


b < c < a
 c < b < a
a < c < b
 c < a <  b


T


T
T
 N


N


T


N


T
 N
 N


T denotes an edge, when the condition is "true" and N otherwise.

Raimondas �iegis Lecture 5



It follows from the presented �gure that three comparisons are
required in the worst case.

Thus such a number of comparisons is necessary for any sorting
algorithm when three elements are sorted.

A more important conclusion is that the number of leaves of binary
tree should be not smaller than a total number of possible
permutations.

Raimondas �iegis Lecture 5



It follows from the presented �gure that three comparisons are
required in the worst case.

Thus such a number of comparisons is necessary for any sorting
algorithm when three elements are sorted.

A more important conclusion is that the number of leaves of binary
tree should be not smaller than a total number of possible
permutations.

Raimondas �iegis Lecture 5



It follows from the presented �gure that three comparisons are
required in the worst case.

Thus such a number of comparisons is necessary for any sorting
algorithm when three elements are sorted.

A more important conclusion is that the number of leaves of binary
tree should be not smaller than a total number of possible
permutations.

Raimondas �iegis Lecture 5



A full binary tree of height h has 2h leaves.

For N elements it is possible to construct N! di�erent permutations,
thus for any sorting algorithm a number of comparisons K must be
not smaller than a solution of the inequality

2K ≥ N!

In the case of three elements we get K = 3 since

23 ≥ 3!

Raimondas �iegis Lecture 5



A full binary tree of height h has 2h leaves.

For N elements it is possible to construct N! di�erent permutations,
thus for any sorting algorithm a number of comparisons K must be
not smaller than a solution of the inequality

2K ≥ N!

In the case of three elements we get K = 3 since

23 ≥ 3!

Raimondas �iegis Lecture 5



For a general number of elements N we can use Stirling's
approximation that

K ≥ N logN − N log e .

Thus for any comparison based sorting algorithm the worst case
complexity is estimated as

Wb ≥ N logN.

Raimondas �iegis Lecture 5



For a general number of elements N we can use Stirling's
approximation that

K ≥ N logN − N log e .

Thus for any comparison based sorting algorithm the worst case
complexity is estimated as

Wb ≥ N logN.

Raimondas �iegis Lecture 5



We already constructed one e�cient sorting algorithm.

Let us assume that elements of A are stored in a binary searching
tree.

Then we print elements by using InOrder algorithm and get a
sorted set.

InOrder is a recursive algorithm and it requires to make O(N)
operations.

This result is very unexpected, since the obtained complexity
estimate O(N) is better than the lower estimate which was proved
above for ANY sorting algorithm.

Raimondas �iegis Lecture 5



We already constructed one e�cient sorting algorithm.

Let us assume that elements of A are stored in a binary searching
tree.

Then we print elements by using InOrder algorithm and get a
sorted set.

InOrder is a recursive algorithm and it requires to make O(N)
operations.

This result is very unexpected, since the obtained complexity
estimate O(N) is better than the lower estimate which was proved
above for ANY sorting algorithm.

Raimondas �iegis Lecture 5



We already constructed one e�cient sorting algorithm.

Let us assume that elements of A are stored in a binary searching
tree.

Then we print elements by using InOrder algorithm and get a
sorted set.

InOrder is a recursive algorithm and it requires to make O(N)
operations.

This result is very unexpected, since the obtained complexity
estimate O(N) is better than the lower estimate which was proved
above for ANY sorting algorithm.

Raimondas �iegis Lecture 5



We already constructed one e�cient sorting algorithm.

Let us assume that elements of A are stored in a binary searching
tree.

Then we print elements by using InOrder algorithm and get a
sorted set.

InOrder is a recursive algorithm and it requires to make O(N)
operations.

This result is very unexpected, since the obtained complexity
estimate O(N) is better than the lower estimate which was proved
above for ANY sorting algorithm.

Raimondas �iegis Lecture 5



Where a mistake was done?

In fact no mistakes were done in our analysis.

We must add costs of constructing an initial balanced search tree.
As it was shown in previous lectures the costs of best algorithms
are equal to O(N logN).

Raimondas �iegis Lecture 5



Where a mistake was done?

In fact no mistakes were done in our analysis.

We must add costs of constructing an initial balanced search tree.
As it was shown in previous lectures the costs of best algorithms
are equal to O(N logN).

Raimondas �iegis Lecture 5



Next we consider two simple sorting algorithms. They are very
useful when a small number of elements is sorted.

Note, that the complexity analysis of these algorithms is also simple
and it helps us to formulate main steps of such a task very clearly.

Raimondas �iegis Lecture 5



Next we consider two simple sorting algorithms. They are very
useful when a small number of elements is sorted.

Note, that the complexity analysis of these algorithms is also simple
and it helps us to formulate main steps of such a task very clearly.

Raimondas �iegis Lecture 5



Selection sort

Selection sort is an in-place comparison sorting algorithm.

This algorithm is noted for its simplicity and has performance
advantages over more complicated algorithms in certain situations.

The Selection sort divides the input list into two parts:

a sorted sublist of items which is built up from left to right at the
front (left) of the list

and a sublist of the remaining unsorted items that occupy the
rest of the list.

Raimondas �iegis Lecture 5



Selection sort

Selection sort is an in-place comparison sorting algorithm.

This algorithm is noted for its simplicity and has performance
advantages over more complicated algorithms in certain situations.

The Selection sort divides the input list into two parts:

a sorted sublist of items which is built up from left to right at the
front (left) of the list

and a sublist of the remaining unsorted items that occupy the
rest of the list.

Raimondas �iegis Lecture 5



Initially, the sorted sublist is empty and the unsorted sublist is the
entire input list, thus the boundary point of both sublists i = 0.

The algorithm proceeds by �nding the smallest (or largest) element
in the unsorted sublist i , i + 1, . . . ,N,

exchange (swap) it with the leftmost unsorted element
(putting it in sorted order), if required,

and move the sublist boundaries one element to the right,
i = i + 1.

Raimondas �iegis Lecture 5



Initially, the sorted sublist is empty and the unsorted sublist is the
entire input list, thus the boundary point of both sublists i = 0.

The algorithm proceeds by �nding the smallest (or largest) element
in the unsorted sublist i , i + 1, . . . ,N,

exchange (swap) it with the leftmost unsorted element
(putting it in sorted order), if required,

and move the sublist boundaries one element to the right,
i = i + 1.

Raimondas �iegis Lecture 5



Selection sort algorithm

SelectionSort ()
begin

(1) for ( i = 1; i < N ; i++ ) do
(2) k = i;
(3) for ( j = i+1; j <= N; j++ ) do
(4) if ( aj < ak ) k = j;

end do

(5) if ( k > i ) swap ( ai , ak );
end do

end SelectionSort

Raimondas �iegis Lecture 5



101
 17
 33
 2
 24
 2
 17
 33
 101
 24


a) b) i = 1, k = 4

2
 17
 33
 101
 24
 2
 17
 24
 101
 33


c) i = 2, k = 2 d) i = 3, k = 5

2
 17
 24
 33
 101


e) i = 4, k = 5

Sorting of integer numbers: i is the iteration number , k is the
index of the smallest number in an unsorted sublist, items ai and ak

are swapped, if required

Raimondas �iegis Lecture 5



Complexity of the selection sort algorithm

Two main operations are important in any sorting algorithm:

comparison of two items ai and aj ,

swapping of ai and aj .

Let L(N) denotes a total number of comparisons and S(N) a
number of swappings when a set A of the size N is sorted.

Raimondas �iegis Lecture 5



Complexity of the selection sort algorithm

Two main operations are important in any sorting algorithm:

comparison of two items ai and aj ,

swapping of ai and aj .

Let L(N) denotes a total number of comparisons and S(N) a
number of swappings when a set A of the size N is sorted.

Raimondas �iegis Lecture 5



In the selection sort algorithm all comparisons are done at each
iteration and for any distribution of elements, thus

L(N) =
N−1∑
i=1

(N − i) =
N−1∑
i=1

i =
N(N − 1)

2
.

This estimate is much worse than the bound N logN.

Raimondas �iegis Lecture 5



In the selection sort algorithm all comparisons are done at each
iteration and for any distribution of elements, thus

L(N) =
N−1∑
i=1

(N − i) =
N−1∑
i=1

i =
N(N − 1)

2
.

This estimate is much worse than the bound N logN.

Raimondas �iegis Lecture 5



The number of swappings depends on the initial distribution of
items.

In the best case when all elements are already sorted no need to
make any swapping, i.e. SG (N) = 0.

In the worst case such swappings are done at each iteration thus
SB(N) = N − 1.

Therefore the selection sort algorithm is recommended when a
number of elements of A is not big, but the value �eld of each
element is large.

Raimondas �iegis Lecture 5



The number of swappings depends on the initial distribution of
items.

In the best case when all elements are already sorted no need to
make any swapping, i.e. SG (N) = 0.

In the worst case such swappings are done at each iteration thus
SB(N) = N − 1.

Therefore the selection sort algorithm is recommended when a
number of elements of A is not big, but the value �eld of each
element is large.

Raimondas �iegis Lecture 5



The number of swappings depends on the initial distribution of
items.

In the best case when all elements are already sorted no need to
make any swapping, i.e. SG (N) = 0.

In the worst case such swappings are done at each iteration thus
SB(N) = N − 1.

Therefore the selection sort algorithm is recommended when a
number of elements of A is not big, but the value �eld of each
element is large.

Raimondas �iegis Lecture 5



The number of swappings depends on the initial distribution of
items.

In the best case when all elements are already sorted no need to
make any swapping, i.e. SG (N) = 0.

In the worst case such swappings are done at each iteration thus
SB(N) = N − 1.

Therefore the selection sort algorithm is recommended when a
number of elements of A is not big, but the value �eld of each
element is large.

Raimondas �iegis Lecture 5



Insertion sort algorithm

Insertion sort is a simple sorting algorithm that builds the �nal
sorted array (or list) one item at a time by comparisons.

Insertion sort provides several advantages:

More e�cient in practice than most other simple quadratic
algorithms such as selection sort;

E�cient for data sets that are already substantially sorted: the
time complexity is O(kN), when each element in the input is no
more than k places away from its sorted position;

It is stable, i.e. don't change the relative order of elements
with equal keys.

Raimondas �iegis Lecture 5



Insertion sort algorithm

Insertion sort is a simple sorting algorithm that builds the �nal
sorted array (or list) one item at a time by comparisons.

Insertion sort provides several advantages:

More e�cient in practice than most other simple quadratic
algorithms such as selection sort;

E�cient for data sets that are already substantially sorted: the
time complexity is O(kN), when each element in the input is no
more than k places away from its sorted position;

It is stable, i.e. don't change the relative order of elements
with equal keys.

Raimondas �iegis Lecture 5



Insertion sort algorithm

Insertion sort is a simple sorting algorithm that builds the �nal
sorted array (or list) one item at a time by comparisons.

Insertion sort provides several advantages:

More e�cient in practice than most other simple quadratic
algorithms such as selection sort;

E�cient for data sets that are already substantially sorted: the
time complexity is O(kN), when each element in the input is no
more than k places away from its sorted position;

It is stable, i.e. don't change the relative order of elements
with equal keys.

Raimondas �iegis Lecture 5



Insertion sort algorithm

Insertion sort is a simple sorting algorithm that builds the �nal
sorted array (or list) one item at a time by comparisons.

Insertion sort provides several advantages:

More e�cient in practice than most other simple quadratic
algorithms such as selection sort;

E�cient for data sets that are already substantially sorted: the
time complexity is O(kN), when each element in the input is no
more than k places away from its sorted position;

It is stable, i.e. don't change the relative order of elements
with equal keys.

Raimondas �iegis Lecture 5



Insertion sort algorithm

Insertion sort is a simple sorting algorithm that builds the �nal
sorted array (or list) one item at a time by comparisons.

Insertion sort provides several advantages:

More e�cient in practice than most other simple quadratic
algorithms such as selection sort;

E�cient for data sets that are already substantially sorted: the
time complexity is O(kN), when each element in the input is no
more than k places away from its sorted position;

It is stable, i.e. don't change the relative order of elements
with equal keys.

Raimondas �iegis Lecture 5



Insertion sort iterates, taking one input element each repetition,
and grows a sorted output list.

At each iteration, insertion sort removes one element from the
input data, �nds the location it belongs within the sorted list, and
inserts it there.

Iterations are repeated until no input elements remain.

Raimondas �iegis Lecture 5



Insertion sort iterates, taking one input element each repetition,
and grows a sorted output list.

At each iteration, insertion sort removes one element from the
input data, �nds the location it belongs within the sorted list, and
inserts it there.

Iterations are repeated until no input elements remain.

Raimondas �iegis Lecture 5



Insertion sort iterates, taking one input element each repetition,
and grows a sorted output list.

At each iteration, insertion sort removes one element from the
input data, �nds the location it belongs within the sorted list, and
inserts it there.

Iterations are repeated until no input elements remain.

Raimondas �iegis Lecture 5



The sorting is done in-place.

At i-th iteration we take element ai and insert it among already
sorted (i − 1) elements.

The comparison is started from (i − 1)-th element.

If ai < ai−1, then these elements are swapped and a next
element ai−2 is tested.

This process is continued till the correct place is de�ned.

Raimondas �iegis Lecture 5



The sorting is done in-place.

At i-th iteration we take element ai and insert it among already
sorted (i − 1) elements.

The comparison is started from (i − 1)-th element.

If ai < ai−1, then these elements are swapped and a next
element ai−2 is tested.

This process is continued till the correct place is de�ned.

Raimondas �iegis Lecture 5



The sorting is done in-place.

At i-th iteration we take element ai and insert it among already
sorted (i − 1) elements.

The comparison is started from (i − 1)-th element.

If ai < ai−1, then these elements are swapped and a next
element ai−2 is tested.

This process is continued till the correct place is de�ned.

Raimondas �iegis Lecture 5



The sorting is done in-place.

At i-th iteration we take element ai and insert it among already
sorted (i − 1) elements.

The comparison is started from (i − 1)-th element.

If ai < ai−1, then these elements are swapped and a next
element ai−2 is tested.

This process is continued till the correct place is de�ned.

Raimondas �iegis Lecture 5



Insertion sort algorithm

InsertionSort ()
begin

(1) for ( i = 2; i <= N; i++ ) do
(2) v = ai ; a0 =v; j = i;
(3) while ( v < aj−1 ) do

(4) aj = aj−1;
(5) j = j-1;

end do

(6) if (i ̸= j) aj = v ;
end do

end InsertionSort

A barrier technique is applied when a dummy element a0 = ai is
inserted before starting iterations (3).
This trick guarantee that iterations will end successfully without
cheking if the �rst element is already reached.

Raimondas �iegis Lecture 5



Insertion sort algorithm

InsertionSort ()
begin

(1) for ( i = 2; i <= N; i++ ) do
(2) v = ai ; a0 =v; j = i;
(3) while ( v < aj−1 ) do

(4) aj = aj−1;
(5) j = j-1;

end do

(6) if (i ̸= j) aj = v ;
end do

end InsertionSort

A barrier technique is applied when a dummy element a0 = ai is
inserted before starting iterations (3).
This trick guarantee that iterations will end successfully without
cheking if the �rst element is already reached.

Raimondas �iegis Lecture 5



Let us sort a list of integer numbers

A = (101, 17, 33, 2, 24).

101
 17
 33
 2
 24
 17
 101
 33
 2
 24


a) b)

17
 33
 101
 2
 24
 2
 17
 33
 101
 24


c) d)

2
 17
 24
 33
 101


e)

A grey color is used to denote the element which was inserted at a
given iteration.

Raimondas �iegis Lecture 5



Let us sort a list of integer numbers

A = (101, 17, 33, 2, 24).

101
 17
 33
 2
 24
 17
 101
 33
 2
 24


a) b)

17
 33
 101
 2
 24
 2
 17
 33
 101
 24


c) d)

2
 17
 24
 33
 101


e)

A grey color is used to denote the element which was inserted at a
given iteration.

Raimondas �iegis Lecture 5



Complexity of the insertion sort algorithm

At each iteration (1) a number of swappings is one less than the
number of comparisons

L(N) = S(N) + N − 1.

If elements of A initially are distributed in an oposite order, then in
step (1) all comparisons are done.

Thus in the worst case we get the complexity estimate

LB(N) =
N∑
i=2

i =
N2 + N − 2

2
=

N2

2
+O(N) .

Raimondas �iegis Lecture 5



Complexity of the insertion sort algorithm

At each iteration (1) a number of swappings is one less than the
number of comparisons

L(N) = S(N) + N − 1.

If elements of A initially are distributed in an oposite order, then in
step (1) all comparisons are done.

Thus in the worst case we get the complexity estimate

LB(N) =
N∑
i=2

i =
N2 + N − 2

2
=

N2

2
+O(N) .

Raimondas �iegis Lecture 5



Average case complexity depends on an initial distribution of data.

We assume that during iteration (1) a new element can be inserted
into any place of the already sorted list with the same probability.

Then it is easy to compute that

LV (N) =
N2

4
+O(N) .

This estimate is only twice better than the worst case complexity.

Raimondas �iegis Lecture 5



Average case complexity depends on an initial distribution of data.

We assume that during iteration (1) a new element can be inserted
into any place of the already sorted list with the same probability.

Then it is easy to compute that

LV (N) =
N2

4
+O(N) .

This estimate is only twice better than the worst case complexity.

Raimondas �iegis Lecture 5



Average case complexity depends on an initial distribution of data.

We assume that during iteration (1) a new element can be inserted
into any place of the already sorted list with the same probability.

Then it is easy to compute that

LV (N) =
N2

4
+O(N) .

This estimate is only twice better than the worst case complexity.

Raimondas �iegis Lecture 5



Average case complexity depends on an initial distribution of data.

We assume that during iteration (1) a new element can be inserted
into any place of the already sorted list with the same probability.

Then it is easy to compute that

LV (N) =
N2

4
+O(N) .

This estimate is only twice better than the worst case complexity.

Raimondas �iegis Lecture 5



Let us consider an interesting modi�cation of this algorithm when
comparison costs are much larger than swapping costs.

Then we can apply the divide-and-conquere method in order to �nd
the insertion place.

Raimondas �iegis Lecture 5



Let us consider an interesting modi�cation of this algorithm when
comparison costs are much larger than swapping costs.

Then we can apply the divide-and-conquere method in order to �nd
the insertion place.

Raimondas �iegis Lecture 5



Let us assume that we want to insert element ai .

First we compare ai with the ai/2.

If
ai/2 ≤ ai ,

then we repeat this process in the interval [i/2+ 1, i ],

otherwise

we test the interval [1, i/2− 1].

Assume that ai must be inserted into j-th place.

Then we move elements aj , . . ., ai−1 to positions
aj+1, . . ., ai and insert the old ai to the new position aj .

The total number of comparisons for this sorting algorithm is
optimal

LN = O(N logN).

Raimondas �iegis Lecture 5



Let us assume that we want to insert element ai .

First we compare ai with the ai/2.

If
ai/2 ≤ ai ,

then we repeat this process in the interval [i/2+ 1, i ],

otherwise

we test the interval [1, i/2− 1].

Assume that ai must be inserted into j-th place.

Then we move elements aj , . . ., ai−1 to positions
aj+1, . . ., ai and insert the old ai to the new position aj .

The total number of comparisons for this sorting algorithm is
optimal

LN = O(N logN).

Raimondas �iegis Lecture 5



Let us assume that we want to insert element ai .

First we compare ai with the ai/2.

If
ai/2 ≤ ai ,

then we repeat this process in the interval [i/2+ 1, i ],

otherwise

we test the interval [1, i/2− 1].

Assume that ai must be inserted into j-th place.

Then we move elements aj , . . ., ai−1 to positions
aj+1, . . ., ai and insert the old ai to the new position aj .

The total number of comparisons for this sorting algorithm is
optimal

LN = O(N logN).

Raimondas �iegis Lecture 5


