
Topological Sorting

Raimondas �iegis

Department of Mathematical Modelling, email: rc@vgtu.lt

April 20 d., 2025

Raimondas �iegis Paskaita 8

In this lecture we consider one more important sorting task.

We already know a few very fast sorting algorithms!

Why to consider new algorithms?

My answers:

1. The problem of topological sorting looks similar to classical
sorting prroblems, but the similarity is only super�cial.

2. The new sorting algorithms can be desribed most e�ciently by
using graph theory.

Raimondas �iegis Paskaita 8

In this lecture we consider one more important sorting task.

We already know a few very fast sorting algorithms!

Why to consider new algorithms?

My answers:

1. The problem of topological sorting looks similar to classical
sorting prroblems, but the similarity is only super�cial.

2. The new sorting algorithms can be desribed most e�ciently by
using graph theory.

Raimondas �iegis Paskaita 8

In this lecture we consider one more important sorting task.

We already know a few very fast sorting algorithms!

Why to consider new algorithms?

My answers:

1. The problem of topological sorting looks similar to classical
sorting prroblems, but the similarity is only super�cial.

2. The new sorting algorithms can be desribed most e�ciently by
using graph theory.

Raimondas �iegis Paskaita 8

We will discuss the tasks that often have to be solved when
creating schedules.

1. Transport schedules, when we aim to coordinate the schedules of
di�erent buse routes so that passengers can use connecting routes
of buses and the duration of transfers should be as short as possible.

2. Many processes in the modern economy and digital technologies
consist of a large number of intermediate operations and it is
necessary to guarantee the correct sequence of these actions.

3. Parallel computing, when di�erent algorithmic tasks are
performed on di�erent processors (cores). Again, we must
guarantee the correct order (dependency) of the execution of
di�erent computational jobs. For example, this is how images are
generated on mobile phones, when you watch a movie or play an
interesting online computer game.

Raimondas �iegis Paskaita 8

We will discuss the tasks that often have to be solved when
creating schedules.

1. Transport schedules, when we aim to coordinate the schedules of
di�erent buse routes so that passengers can use connecting routes
of buses and the duration of transfers should be as short as possible.

2. Many processes in the modern economy and digital technologies
consist of a large number of intermediate operations and it is
necessary to guarantee the correct sequence of these actions.

3. Parallel computing, when di�erent algorithmic tasks are
performed on di�erent processors (cores). Again, we must
guarantee the correct order (dependency) of the execution of
di�erent computational jobs. For example, this is how images are
generated on mobile phones, when you watch a movie or play an
interesting online computer game.

Raimondas �iegis Paskaita 8

We will discuss the tasks that often have to be solved when
creating schedules.

1. Transport schedules, when we aim to coordinate the schedules of
di�erent buse routes so that passengers can use connecting routes
of buses and the duration of transfers should be as short as possible.

2. Many processes in the modern economy and digital technologies
consist of a large number of intermediate operations and it is
necessary to guarantee the correct sequence of these actions.

3. Parallel computing, when di�erent algorithmic tasks are
performed on di�erent processors (cores). Again, we must
guarantee the correct order (dependency) of the execution of
di�erent computational jobs. For example, this is how images are
generated on mobile phones, when you watch a movie or play an
interesting online computer game.

Raimondas �iegis Paskaita 8

We will discuss the tasks that often have to be solved when
creating schedules.

1. Transport schedules, when we aim to coordinate the schedules of
di�erent buse routes so that passengers can use connecting routes
of buses and the duration of transfers should be as short as possible.

2. Many processes in the modern economy and digital technologies
consist of a large number of intermediate operations and it is
necessary to guarantee the correct sequence of these actions.

3. Parallel computing, when di�erent algorithmic tasks are
performed on di�erent processors (cores). Again, we must
guarantee the correct order (dependency) of the execution of
di�erent computational jobs. For example, this is how images are
generated on mobile phones, when you watch a movie or play an
interesting online computer game.

Raimondas �iegis Paskaita 8

We have a set of tasks (vertices)

U = (u1, u2, . . . , uN),

and a set which de�nes a linear ordering of vertices
(a set of graph edges)

C = (ui1 ≺ uj1 , ui2 ≺ uj2 , . . . , uiM ≺ ujM).

Here the connection (an edge which connects two vertices)

uik ≺ ujk

de�nes, that the vertex ujk can be visited if and only if
all its dependencies uik are already visited (tasks are �nished).

Raimondas �iegis Paskaita 8

We have a set of tasks (vertices)

U = (u1, u2, . . . , uN),

and a set which de�nes a linear ordering of vertices
(a set of graph edges)

C = (ui1 ≺ uj1 , ui2 ≺ uj2 , . . . , uiM ≺ ujM).

Here the connection (an edge which connects two vertices)

uik ≺ ujk

de�nes, that the vertex ujk can be visited if and only if
all its dependencies uik are already visited (tasks are �nished).

Raimondas �iegis Paskaita 8

We have a set of tasks (vertices)

U = (u1, u2, . . . , uN),

and a set which de�nes a linear ordering of vertices
(a set of graph edges)

C = (ui1 ≺ uj1 , ui2 ≺ uj2 , . . . , uiM ≺ ujM).

Here the connection (an edge which connects two vertices)

uik ≺ ujk

de�nes, that the vertex ujk can be visited if and only if
all its dependencies uik are already visited (tasks are �nished).

Raimondas �iegis Paskaita 8

A topological ordering is possible if and only if the graph has no
directed cycles, that is, if it is a directed acyclic graph (DAG).

We want to order all elements of the set U in the way

U
′
= (u

′
1, u

′
2, . . . , u

′
N),

that all connections de�ned in C are satis�ed:

If a relation
u

′
i ≺ u

′
j

is speci�ed, then we have the ordering of elements i < j .

Raimondas �iegis Paskaita 8

A topological ordering is possible if and only if the graph has no
directed cycles, that is, if it is a directed acyclic graph (DAG).

We want to order all elements of the set U in the way

U
′
= (u

′
1, u

′
2, . . . , u

′
N),

that all connections de�ned in C are satis�ed:

If a relation
u

′
i ≺ u

′
j

is speci�ed, then we have the ordering of elements i < j .

Raimondas �iegis Paskaita 8

A topological ordering is possible if and only if the graph has no
directed cycles, that is, if it is a directed acyclic graph (DAG).

We want to order all elements of the set U in the way

U
′
= (u

′
1, u

′
2, . . . , u

′
N),

that all connections de�ned in C are satis�ed:

If a relation
u

′
i ≺ u

′
j

is speci�ed, then we have the ordering of elements i < j .

Raimondas �iegis Paskaita 8

We will notice that these requirements often do not de�ne a single
sorted set and we can �nd several solutions.

This problem is called topological sorting.

Raimondas �iegis Paskaita 8

Planting trees

We need to plant three trees.

For planting the j-th tree let us denote

by dj � the task of digging a hole,

by pj � the task of planting the tree in the hole,

by uj � the task of �lling the hole.

Then we have a set of nine tasks

U =
(
d1, d2, d3, p1, p2, p3, u1, u2, u3

)
.

The order of the tasks is de�ned by a natural set of relations:

C =
(
dj ≺ pj , pj ≺ uj , j = 1, 2, 3

)
.

Raimondas �iegis Paskaita 8

Planting trees

We need to plant three trees.

For planting the j-th tree let us denote

by dj � the task of digging a hole,

by pj � the task of planting the tree in the hole,

by uj � the task of �lling the hole.

Then we have a set of nine tasks

U =
(
d1, d2, d3, p1, p2, p3, u1, u2, u3

)
.

The order of the tasks is de�ned by a natural set of relations:

C =
(
dj ≺ pj , pj ≺ uj , j = 1, 2, 3

)
.

Raimondas �iegis Paskaita 8

Planting trees

We need to plant three trees.

For planting the j-th tree let us denote

by dj � the task of digging a hole,

by pj � the task of planting the tree in the hole,

by uj � the task of �lling the hole.

Then we have a set of nine tasks

U =
(
d1, d2, d3, p1, p2, p3, u1, u2, u3

)
.

The order of the tasks is de�ned by a natural set of relations:

C =
(
dj ≺ pj , pj ≺ uj , j = 1, 2, 3

)
.

Raimondas �iegis Paskaita 8

Planting trees

We need to plant three trees.

For planting the j-th tree let us denote

by dj � the task of digging a hole,

by pj � the task of planting the tree in the hole,

by uj � the task of �lling the hole.

Then we have a set of nine tasks

U =
(
d1, d2, d3, p1, p2, p3, u1, u2, u3

)
.

The order of the tasks is de�ned by a natural set of relations:

C =
(
dj ≺ pj , pj ≺ uj , j = 1, 2, 3

)
.

Raimondas �iegis Paskaita 8

It is possible to construct a few topologically sorted sets of tasks.

For example we can plant each tree separately, then the following
set of tasks is used:

U
′
=

(
d1, p1, u1, d2, p2, u2, d3, p3, u3

)
.

We can divide the work in another way, �rst we have to dig all
three holes, plant the trees in them, and then bury all three holes
(again, the order of the individual trees does not matter):

U
′′
=

(
d1, d2, d3, p3, p2, p1, u2, u3, u1

)
.

Raimondas �iegis Paskaita 8

It is possible to construct a few topologically sorted sets of tasks.

For example we can plant each tree separately, then the following
set of tasks is used:

U
′
=

(
d1, p1, u1, d2, p2, u2, d3, p3, u3

)
.

We can divide the work in another way, �rst we have to dig all
three holes, plant the trees in them, and then bury all three holes
(again, the order of the individual trees does not matter):

U
′′
=

(
d1, d2, d3, p3, p2, p1, u2, u3, u1

)
.

Raimondas �iegis Paskaita 8

A completely unfortunate, but still not rarely seen option, when the
work begins in this order

U∗ =
(
d1, d2, d3, u2, u3, u1

)
.

Two teams are happy that they have done their part of the job, but
the total result is . . .

Raimondas �iegis Paskaita 8

A completely unfortunate, but still not rarely seen option, when the
work begins in this order

U∗ =
(
d1, d2, d3, u2, u3, u1

)
.

Two teams are happy that they have done their part of the job, but
the total result is . . .

Raimondas �iegis Paskaita 8

Now we will present a rigorous formulation of the topological
sorting problem.

We have a directed graph G = (V ,E).
Here V is the set of vertices of the graph, and E is the set of edges
of the graph, the edges have directions.

Let's assume that the graph G has no cycles.

Raimondas �iegis Paskaita 8

Topological Sorting

The vertices of the graph must be labeled so that each edge
connects a lower-numbered vertex to a higher-numbered vertex.

An example of a solution to a topological sorting problem is
presented in the �gure.

Raimondas �iegis Paskaita 8

Topological Sorting

The vertices of the graph must be labeled so that each edge
connects a lower-numbered vertex to a higher-numbered vertex.

An example of a solution to a topological sorting problem is
presented in the �gure.

Raimondas �iegis Paskaita 8

A

C

ED

F G

B

A

C

ED

F G

B

1
2

3

4

5

6

7

a) the initial unsorted graph b) a sorted graph

AC E D FGB

c) a line ordering of vertices of the graph.

Raimondas �iegis Paskaita 8

A

C

ED

F G

B

A

C

ED

F G

B

1
2

3

4

5

6

7

a) the initial unsorted graph b) a sorted graph

AC E D FGB

c) a line ordering of vertices of the graph.

Raimondas �iegis Paskaita 8

Depth-�rst search method

We will see that we can solve this new and complex sorting problem
simply by speci�cally choosing the order in which the vertices of the
graph are visited.

Let us remember the printing of an arithmetic expression in the
three basic forms: pre�x, in�x, and post�x. This task was solved by
properly chosen recursive algorithms for traversing the vertices of a
binary tree (which is also a particular type of a graph).

The Depth-�rst search strategy is simple: from a given graph vertex
we go to the adjacent vertex, that has not yet been visited during
this search procedure.

Raimondas �iegis Paskaita 8

Depth-�rst search method

We will see that we can solve this new and complex sorting problem
simply by speci�cally choosing the order in which the vertices of the
graph are visited.

Let us remember the printing of an arithmetic expression in the
three basic forms: pre�x, in�x, and post�x. This task was solved by
properly chosen recursive algorithms for traversing the vertices of a
binary tree (which is also a particular type of a graph).

The Depth-�rst search strategy is simple: from a given graph vertex
we go to the adjacent vertex, that has not yet been visited during
this search procedure.

Raimondas �iegis Paskaita 8

Depth-�rst search method

We will see that we can solve this new and complex sorting problem
simply by speci�cally choosing the order in which the vertices of the
graph are visited.

Let us remember the printing of an arithmetic expression in the
three basic forms: pre�x, in�x, and post�x. This task was solved by
properly chosen recursive algorithms for traversing the vertices of a
binary tree (which is also a particular type of a graph).

The Depth-�rst search strategy is simple: from a given graph vertex
we go to the adjacent vertex, that has not yet been visited during
this search procedure.

Raimondas �iegis Paskaita 8

If there are no such vertices, we take one step back and look for a
new path from the parent vertex. This way we �nd all the vertices
that can be reached from the chosen starting vertex.

If the graph is not connected, then we repeat the algorithm, taking
a new, unvisited starting vertex.

Since we visit the most distant vertices �rst during the search, we
call this method depth��rst search algorithm.

Raimondas �iegis Paskaita 8

If there are no such vertices, we take one step back and look for a
new path from the parent vertex. This way we �nd all the vertices
that can be reached from the chosen starting vertex.

If the graph is not connected, then we repeat the algorithm, taking
a new, unvisited starting vertex.

Since we visit the most distant vertices �rst during the search, we
call this method depth��rst search algorithm.

Raimondas �iegis Paskaita 8

If there are no such vertices, we take one step back and look for a
new path from the parent vertex. This way we �nd all the vertices
that can be reached from the chosen starting vertex.

If the graph is not connected, then we repeat the algorithm, taking
a new, unvisited starting vertex.

Since we visit the most distant vertices �rst during the search, we
call this method depth��rst search algorithm.

Raimondas �iegis Paskaita 8

Now we will provide details of the depth-�rst search algorithm.

Each vertex of the graph can be in one of three states (we will
denote the states by di�erent colors).

Initially, all vertices are unvisited and are colored white.

When a vertex v is visited for the �rst time, it becomes not new
and is painted gray.

We store the time when it became not new in the array element
d(v) (discovered).

A vertex is painted black when all edges exiting it have been
examined. Such vertices are called �nished.

The moment when the vertex became black is stored in the array
element f (v) (�nished).

Raimondas �iegis Paskaita 8

Now we will provide details of the depth-�rst search algorithm.

Each vertex of the graph can be in one of three states (we will
denote the states by di�erent colors).

Initially, all vertices are unvisited and are colored white.

When a vertex v is visited for the �rst time, it becomes not new
and is painted gray.

We store the time when it became not new in the array element
d(v) (discovered).

A vertex is painted black when all edges exiting it have been
examined. Such vertices are called �nished.

The moment when the vertex became black is stored in the array
element f (v) (�nished).

Raimondas �iegis Paskaita 8

Now we will provide details of the depth-�rst search algorithm.

Each vertex of the graph can be in one of three states (we will
denote the states by di�erent colors).

Initially, all vertices are unvisited and are colored white.

When a vertex v is visited for the �rst time, it becomes not new
and is painted gray.

We store the time when it became not new in the array element
d(v) (discovered).

A vertex is painted black when all edges exiting it have been
examined. Such vertices are called �nished.

The moment when the vertex became black is stored in the array
element f (v) (�nished).

Raimondas �iegis Paskaita 8

Now we will provide details of the depth-�rst search algorithm.

Each vertex of the graph can be in one of three states (we will
denote the states by di�erent colors).

Initially, all vertices are unvisited and are colored white.

When a vertex v is visited for the �rst time, it becomes not new
and is painted gray.

We store the time when it became not new in the array element
d(v) (discovered).

A vertex is painted black when all edges exiting it have been
examined. Such vertices are called �nished.

The moment when the vertex became black is stored in the array
element f (v) (�nished).

Raimondas �iegis Paskaita 8

Now we will provide details of the depth-�rst search algorithm.

Each vertex of the graph can be in one of three states (we will
denote the states by di�erent colors).

Initially, all vertices are unvisited and are colored white.

When a vertex v is visited for the �rst time, it becomes not new
and is painted gray.

We store the time when it became not new in the array element
d(v) (discovered).

A vertex is painted black when all edges exiting it have been
examined. Such vertices are called �nished.

The moment when the vertex became black is stored in the array
element f (v) (�nished).

Raimondas �iegis Paskaita 8

We store the search paths in an array π, the value of its element
π(v) gives the vertex u from which we �rst visited v , i.e.

π(v) = u.

Raimondas �iegis Paskaita 8

Depth-�rst search algorithm

DepthFirstSearch (G)
begin
(1) for (v ∈ V) do
(2) color(v) = white

(3) π(v) = NULL
end do

(4) t = 0
(5) for (u ∈ V) do
(6) if (color(u) == white) then
(7) DFS_Visit(u)

end if
end do

end DepthFirstSearch

Raimondas �iegis Paskaita 8

Recursive DFS_Visit algorithm

DFS_Visit (u)
begin
(2) color(u) = grey

(3) t = t +1, d(u) = t
(4) for (v ∈ N(u)) do
(5) if (color(v) == white) then
(6) π(v) = u
(7) DFS_Visit(v)

end if
end do

(8) color(u) = black

(9) t = t +1, f(u) = t
end DFS_Visit

Raimondas �iegis Paskaita 8

Estimates of the complexity of this topological sort algorithm

For each vertex v ∈ V we execute the DFS_Visit procedure once
and the algorithm is repeated as many times as this vertex has
neighbors. Therefore, the total size of basic operations for the
topological sorting algorithm is equal to

Θ(|V |+ |E |).

Raimondas �iegis Paskaita 8

Let us consider the following directed graph:

s v

x

u
w

y z

1/

Can we sort it topologically?

Raimondas �iegis Paskaita 8

Let us consider the following directed graph:

s v

x

u
w

y z

1/

Can we sort it topologically?

Raimondas �iegis Paskaita 8

Let us consider the following directed graph:

s v

x

u
w

y z

1/

Can we sort it topologically?

Raimondas �iegis Paskaita 8

We visit the vertices of the graph using the depth-�rst search
method. The process of visiting the vertices after each call to the
DFS_Visit function is shown in the �gure. The vertices are given
the values of (d(v), f (v)).

s v

x

u
w

y z

1/

s v

x

u
w

y z

1/

2/

s v

x

u
w

y z

1/

2/

3/

s v

x

u
w

y z

1/

2/

3/

4/

s v

x

u
w

y z

1/

2/

3/

4/5

s v

x

u
w

y z

1/

2/

3/

4/5

6/

Raimondas �iegis Paskaita 8

We visit the vertices of the graph using the depth-�rst search
method. The process of visiting the vertices after each call to the
DFS_Visit function is shown in the �gure. The vertices are given
the values of (d(v), f (v)).

s v

x

u
w

y z

1/

s v

x

u
w

y z

1/

2/

s v

x

u
w

y z

1/

2/

3/

s v

x

u
w

y z

1/

2/

3/

4/

s v

x

u
w

y z

1/

2/

3/

4/5

s v

x

u
w

y z

1/

2/

3/

4/5

6/

Raimondas �iegis Paskaita 8

s v

x

u
w

y z

1/

2/

3/

4/5

6/

7/

s v

x

u
w

y z

1/

2/

3/

4/5

6/

7/8

s v

x

u
w

y z

1/

2/

3/

4/5

6/

7/8

9/

s v

x

u
w

y z

1/

2/

3/

4/5

6/

7/8

9/10

s v

x

u
w

y z

1/

2/

3/

4/5

6/11

7/8

9/10

s v

x

u
w

y z

1/14

2/13

3/12

4/5

6/11

7/8

9/10

Raimondas �iegis Paskaita 8

s v

x

u
w

y z

1/14

2/13

3/12

4/5

6/11

7/8

9/10

s v

x

u
w

y z

1

2

3

4

5

6

7

a) visted vertices b) the order of visits

Raimondas �iegis Paskaita 8

To obtain a sorted set of vertices, we modify the DFS_Visit

procedure, at the end of which we insert the vertex u. We put it at
the beginning of the linear list (it is enough to use a stack):

DFS_VisitSort (u)
begin
(2) color(u) = grey;
(3) t = t +1, d(u) = t;
(4) for (v ∈ N(u)) do
(5) if (color(v) == white) then
(6) π(v) = u;
(7) DFS_VisitSort(v);

end if
end do

(8) color(u) = black;
(9) t = t +1, f(u) = t;
(10) List.InsertHead (u);

end DFS_VisitSort

Raimondas �iegis Paskaita 8

Topological Sorting : Example

s v

x

u

w

y z

s v

x

u
w

y z

1

2

3

4

5

6

7

a) b)

Raimondas �iegis Paskaita 8

