
Special sorting algorithms

Raimondas �iegis

Matematinio modeliavimo katedra, e-mail: rc@vgtu.lt

December 5 d., 2023

Raimondas �iegis Lecture 7

In this lecture we consider some special sorting algorithms. They
are faster than general algorithms, since an additional information
is given on the data.

It is clear that even in this case general sorting algorithms, such as
QuickSort, can be used. But special algorithms are solving this task
much faster.

We know that a complexity of fast general sorting algorithms is
de�ned as O(N logN).

Our aim is to construct algorithms that have a complexity Θ(N)
even in the worst case. Clearly, such a result can be achieved only
for special types of data.

Raimondas �iegis Lecture 7

In this lecture we consider some special sorting algorithms. They
are faster than general algorithms, since an additional information
is given on the data.

It is clear that even in this case general sorting algorithms, such as
QuickSort, can be used. But special algorithms are solving this task
much faster.

We know that a complexity of fast general sorting algorithms is
de�ned as O(N logN).

Our aim is to construct algorithms that have a complexity Θ(N)
even in the worst case. Clearly, such a result can be achieved only
for special types of data.

Raimondas �iegis Lecture 7

In this lecture we consider some special sorting algorithms. They
are faster than general algorithms, since an additional information
is given on the data.

It is clear that even in this case general sorting algorithms, such as
QuickSort, can be used. But special algorithms are solving this task
much faster.

We know that a complexity of fast general sorting algorithms is
de�ned as O(N logN).

Our aim is to construct algorithms that have a complexity Θ(N)
even in the worst case. Clearly, such a result can be achieved only
for special types of data.

Raimondas �iegis Lecture 7

Counting sort algorithm

We are sorting elements with keys k integer numbers not larger
than K :

1 ≤ ai .key ≤ K , i = 1, . . . ,N.

It is interesting to note that no comparisons are done in this
algorithm.

No comparisons are used and still all elements are sorted!

Raimondas �iegis Lecture 7

Counting sort algorithm

We are sorting elements with keys k integer numbers not larger
than K :

1 ≤ ai .key ≤ K , i = 1, . . . ,N.

It is interesting to note that no comparisons are done in this
algorithm.

No comparisons are used and still all elements are sorted!

Raimondas �iegis Lecture 7

Counting sort algorithm

We are sorting elements with keys k integer numbers not larger
than K :

1 ≤ ai .key ≤ K , i = 1, . . . ,N.

It is interesting to note that no comparisons are done in this
algorithm.

No comparisons are used and still all elements are sorted!

Raimondas �iegis Lecture 7

1a. The array L is initialized, its elements de�ne K single linked
lists. Initially all lists are empty.

1b. All elements are transfered into appropriate linked lists
according their key values:

for j= 1, . . . , N

L[aj .key].append(aj)

The complexity of this part of the algorithm is equal to Θ(N).

Raimondas �iegis Lecture 7

1a. The array L is initialized, its elements de�ne K single linked
lists. Initially all lists are empty.

1b. All elements are transfered into appropriate linked lists
according their key values:

for j= 1, . . . , N

L[aj .key].append(aj)

The complexity of this part of the algorithm is equal to Θ(N).

Raimondas �iegis Lecture 7

1a. The array L is initialized, its elements de�ne K single linked
lists. Initially all lists are empty.

1b. All elements are transfered into appropriate linked lists
according their key values:

for j= 1, . . . , N

L[aj .key].append(aj)

The complexity of this part of the algorithm is equal to Θ(N).

Raimondas �iegis Lecture 7

2. The separate lists are joined into one sorted linked list S

for k= 1, . . . , K

S .extend(L[k])

Let's analyse the complexity of this step.

The complexity of puting elements of list L[k] into the sorted list S
is equal to Θ(|L[k]|+ 1).

The complexity of saving elements of all K lists is equal to
Θ(N + K).

The same linear complexity estimate is valid for the full
CountingSort algorithm.

Raimondas �iegis Lecture 7

2. The separate lists are joined into one sorted linked list S

for k= 1, . . . , K

S .extend(L[k])

Let's analyse the complexity of this step.

The complexity of puting elements of list L[k] into the sorted list S
is equal to Θ(|L[k]|+ 1).

The complexity of saving elements of all K lists is equal to
Θ(N + K).

The same linear complexity estimate is valid for the full
CountingSort algorithm.

Raimondas �iegis Lecture 7

2. The separate lists are joined into one sorted linked list S

for k= 1, . . . , K

S .extend(L[k])

Let's analyse the complexity of this step.

The complexity of puting elements of list L[k] into the sorted list S
is equal to Θ(|L[k]|+ 1).

The complexity of saving elements of all K lists is equal to
Θ(N + K).

The same linear complexity estimate is valid for the full
CountingSort algorithm.

Raimondas �iegis Lecture 7

2. The separate lists are joined into one sorted linked list S

for k= 1, . . . , K

S .extend(L[k])

Let's analyse the complexity of this step.

The complexity of puting elements of list L[k] into the sorted list S
is equal to Θ(|L[k]|+ 1).

The complexity of saving elements of all K lists is equal to
Θ(N + K).

The same linear complexity estimate is valid for the full
CountingSort algorithm.

Raimondas �iegis Lecture 7

If the bound K don't depend on N

or

it can grow, but the following estimate

K ≤ cN

is valid with small c , e.g. c = 2,

then the complexity of CountingSort algorithm is linear

Θ(N).

Raimondas �iegis Lecture 7

What to do if K is growing much faster, e.g. K = N3?

Raimondas �iegis Lecture 7

Radix sorting algorithm

For simplicity of presentation we use the decimal numeral system.

Other base values b also can be used, e.g. binary b = 2 or
hexadecimal numbers b = 16.

Let's assume that elements of the set A are integer numbers

0 ⩽ ai < 10n ,

but clearly not all numbers from this interval are necessary included
in A.

Raimondas �iegis Lecture 7

Radix sorting algorithm

For simplicity of presentation we use the decimal numeral system.

Other base values b also can be used, e.g. binary b = 2 or
hexadecimal numbers b = 16.

Let's assume that elements of the set A are integer numbers

0 ⩽ ai < 10n ,

but clearly not all numbers from this interval are necessary included
in A.

Raimondas �iegis Lecture 7

Radix sorting algorithm

For simplicity of presentation we use the decimal numeral system.

Other base values b also can be used, e.g. binary b = 2 or
hexadecimal numbers b = 16.

Let's assume that elements of the set A are integer numbers

0 ⩽ ai < 10n ,

but clearly not all numbers from this interval are necessary included
in A.

Raimondas �iegis Lecture 7

RadixSort algorithm is a modi�cation of the CountingSort
algorithm.

It is a non-comparative sorting algorithm.

Radix sort avoids comparison by creating and distributing elements
into buckets according to their radix (base).

For elements with more than one signi�cant digit, this bucketing
process is repeated for each digit, while preserving the ordering of
the prior step, until all digits have been considered.

Raimondas �iegis Lecture 7

RadixSort algorithm is a modi�cation of the CountingSort
algorithm.

It is a non-comparative sorting algorithm.

Radix sort avoids comparison by creating and distributing elements
into buckets according to their radix (base).

For elements with more than one signi�cant digit, this bucketing
process is repeated for each digit, while preserving the ordering of
the prior step, until all digits have been considered.

Raimondas �iegis Lecture 7

RadixSort algorithm is a modi�cation of the CountingSort
algorithm.

It is a non-comparative sorting algorithm.

Radix sort avoids comparison by creating and distributing elements
into buckets according to their radix (base).

For elements with more than one signi�cant digit, this bucketing
process is repeated for each digit, while preserving the ordering of
the prior step, until all digits have been considered.

Raimondas �iegis Lecture 7

First we distribute all elements into ten (or b) sub-sets (buckets)
according the last (least signi�cant) digit.

These subsets are combined into one set which is sorted with
respect to the least signi�cant digits.

The obtained set is again distributed and sorted for the next digit.

This bucketing process is repeated for each digit, until all n digits
have been considered.

Note, that the ordering of the prior step is always preserved.

Raimondas �iegis Lecture 7

First we distribute all elements into ten (or b) sub-sets (buckets)
according the last (least signi�cant) digit.

These subsets are combined into one set which is sorted with
respect to the least signi�cant digits.

The obtained set is again distributed and sorted for the next digit.

This bucketing process is repeated for each digit, until all n digits
have been considered.

Note, that the ordering of the prior step is always preserved.

Raimondas �iegis Lecture 7

First we distribute all elements into ten (or b) sub-sets (buckets)
according the last (least signi�cant) digit.

These subsets are combined into one set which is sorted with
respect to the least signi�cant digits.

The obtained set is again distributed and sorted for the next digit.

This bucketing process is repeated for each digit, until all n digits
have been considered.

Note, that the ordering of the prior step is always preserved.

Raimondas �iegis Lecture 7

First we distribute all elements into ten (or b) sub-sets (buckets)
according the last (least signi�cant) digit.

These subsets are combined into one set which is sorted with
respect to the least signi�cant digits.

The obtained set is again distributed and sorted for the next digit.

This bucketing process is repeated for each digit, until all n digits
have been considered.

Note, that the ordering of the prior step is always preserved.

Raimondas �iegis Lecture 7

Let's sort the following set of integer numbers (n = 2):

A = (73, 29, 92, 14, 74, 45, 54, 18, 3, 97, 9, 61, 11, 63, 35, 37).

Starting from the rightmost (last) digit, sort the numbers based on
that digit:

0 :

1 : 61, 11 ,

2 : 92

3 : 73, 3, 63 ,

4 : 14, 74, 54 ,

5 : 45, 35 ,

6 :

7 : 97, 37 ,

8 : 18 ,

9 : 29, 9 .

Raimondas �iegis Lecture 7

Let's sort the following set of integer numbers (n = 2):

A = (73, 29, 92, 14, 74, 45, 54, 18, 3, 97, 9, 61, 11, 63, 35, 37).

Starting from the rightmost (last) digit, sort the numbers based on
that digit:

0 :

1 : 61, 11 ,

2 : 92

3 : 73, 3, 63 ,

4 : 14, 74, 54 ,

5 : 45, 35 ,

6 :

7 : 97, 37 ,

8 : 18 ,

9 : 29, 9 .

Raimondas �iegis Lecture 7

The sub-sets are combined in-order:

A = (61, 11, 92, 73, 3, 63, 14, 74, 54, 45, 35, 97, 37, 18, 29, 9).

Sorting by the next left digit we get the sub-sets (buckets)

0 : 03, 09 ,

1 : 11, 14, 18 ,

2 : 29 ,

3 : 35, 37 ,

4 : 45 ,

5 : 54 ,

6 : 61, 63 ,

7 : 73, 74 ,

8 :

9 : 92, 97 .

Raimondas �iegis Lecture 7

The sub-sets are combined in-order:

A = (61, 11, 92, 73, 3, 63, 14, 74, 54, 45, 35, 97, 37, 18, 29, 9).

Sorting by the next left digit we get the sub-sets (buckets)

0 : 03, 09 ,

1 : 11, 14, 18 ,

2 : 29 ,

3 : 35, 37 ,

4 : 45 ,

5 : 54 ,

6 : 61, 63 ,

7 : 73, 74 ,

8 :

9 : 92, 97 .

Raimondas �iegis Lecture 7

Combining all ten sub-sets the sorted set is obtained

A = (3, 9, 11, 14, 18, 29, 35, 37, 45, 54, 61, 63, 73, 74, 92, 97).

We claim that Radix algorithm is sorting correctly any set of integer
numbers.

It is su�cient to consider a case of two digits numbers.

The proof for general n-digits case can be done by using the
mathematical induction method.

Raimondas �iegis Lecture 7

Combining all ten sub-sets the sorted set is obtained

A = (3, 9, 11, 14, 18, 29, 35, 37, 45, 54, 61, 63, 73, 74, 92, 97).

We claim that Radix algorithm is sorting correctly any set of integer
numbers.

It is su�cient to consider a case of two digits numbers.

The proof for general n-digits case can be done by using the
mathematical induction method.

Raimondas �iegis Lecture 7

Combining all ten sub-sets the sorted set is obtained

A = (3, 9, 11, 14, 18, 29, 35, 37, 45, 54, 61, 63, 73, 74, 92, 97).

We claim that Radix algorithm is sorting correctly any set of integer
numbers.

It is su�cient to consider a case of two digits numbers.

The proof for general n-digits case can be done by using the
mathematical induction method.

Raimondas �iegis Lecture 7

Let's consider two digit numbers X and Y :

X = 10 a+ b, Y = 10 c + d , 0 ⩽ a, b, c, d ⩽ 9.

Inequality X < Y is valid, if

(a < c) or (a = c)& (b < d).

If a < c , then at the second step of Radix sort algorithm X is
distributed into a bucket with smaller order number than a bucket
to which Y is distributed.

If (a = c)& (b < d), then at the �rst step of Radix sort algorithm
X is distributed into a bucket with a smaller order number than Y .

After the second step both elements will be distributed into the
same bucket, but X will be distributed before Y .

Thus in both cases Radix sort correctly these numbers.

Raimondas �iegis Lecture 7

Let's consider two digit numbers X and Y :

X = 10 a+ b, Y = 10 c + d , 0 ⩽ a, b, c, d ⩽ 9.

Inequality X < Y is valid, if

(a < c) or (a = c)& (b < d).

If a < c , then at the second step of Radix sort algorithm X is
distributed into a bucket with smaller order number than a bucket
to which Y is distributed.

If (a = c)& (b < d), then at the �rst step of Radix sort algorithm
X is distributed into a bucket with a smaller order number than Y .

After the second step both elements will be distributed into the
same bucket, but X will be distributed before Y .

Thus in both cases Radix sort correctly these numbers.

Raimondas �iegis Lecture 7

Let's consider two digit numbers X and Y :

X = 10 a+ b, Y = 10 c + d , 0 ⩽ a, b, c, d ⩽ 9.

Inequality X < Y is valid, if

(a < c) or (a = c)& (b < d).

If a < c , then at the second step of Radix sort algorithm X is
distributed into a bucket with smaller order number than a bucket
to which Y is distributed.

If (a = c)& (b < d), then at the �rst step of Radix sort algorithm
X is distributed into a bucket with a smaller order number than Y .

After the second step both elements will be distributed into the
same bucket, but X will be distributed before Y .

Thus in both cases Radix sort correctly these numbers.

Raimondas �iegis Lecture 7

Let's consider two digit numbers X and Y :

X = 10 a+ b, Y = 10 c + d , 0 ⩽ a, b, c, d ⩽ 9.

Inequality X < Y is valid, if

(a < c) or (a = c)& (b < d).

If a < c , then at the second step of Radix sort algorithm X is
distributed into a bucket with smaller order number than a bucket
to which Y is distributed.

If (a = c)& (b < d), then at the �rst step of Radix sort algorithm
X is distributed into a bucket with a smaller order number than Y .

After the second step both elements will be distributed into the
same bucket, but X will be distributed before Y .

Thus in both cases Radix sort correctly these numbers.

Raimondas �iegis Lecture 7

Let's consider two digit numbers X and Y :

X = 10 a+ b, Y = 10 c + d , 0 ⩽ a, b, c, d ⩽ 9.

Inequality X < Y is valid, if

(a < c) or (a = c)& (b < d).

If a < c , then at the second step of Radix sort algorithm X is
distributed into a bucket with smaller order number than a bucket
to which Y is distributed.

If (a = c)& (b < d), then at the �rst step of Radix sort algorithm
X is distributed into a bucket with a smaller order number than Y .

After the second step both elements will be distributed into the
same bucket, but X will be distributed before Y .

Thus in both cases Radix sort correctly these numbers.

Raimondas �iegis Lecture 7

Complexity of the Radix sort algorithm

Let's count basic operations when N integer numbers are sorted
and they are written in b base format.

We assume that the following bound is valid for the values of these
numbers (in the decimal numeral system)

1 ≤ k ≤ K .

It follows from the complexity analysis of CountSort algorithm that

for one step of Radix sort algorithm Θ(N + b) operations are done.

The number of steps is equal to n = logb K , thus total cost of
Radix sort algorithm is given by

Θ
(
(N + b) logb K

)
.

Raimondas �iegis Lecture 7

Complexity of the Radix sort algorithm

Let's count basic operations when N integer numbers are sorted
and they are written in b base format.

We assume that the following bound is valid for the values of these
numbers (in the decimal numeral system)

1 ≤ k ≤ K .

It follows from the complexity analysis of CountSort algorithm that

for one step of Radix sort algorithm Θ(N + b) operations are done.

The number of steps is equal to n = logb K , thus total cost of
Radix sort algorithm is given by

Θ
(
(N + b) logb K

)
.

Raimondas �iegis Lecture 7

It is easy to compute that the optimal base value is b = N, then

Θ
(
N logN K

)
.

Let us reconsider the previous example of K = N3.

Then logN K = 3 and the complexity of Radix sort algorithm is
linear again

Θ(N).

Raimondas �iegis Lecture 7

It is easy to compute that the optimal base value is b = N, then

Θ
(
N logN K

)
.

Let us reconsider the previous example of K = N3.

Then logN K = 3 and the complexity of Radix sort algorithm is
linear again

Θ(N).

Raimondas �iegis Lecture 7

External sorting

External sorting is required when the data being sorted do not �t
into the main memory of a computing device (RAM)

and

instead they must reside in the slower external memory, usually a
disk drive.

Raimondas �iegis Lecture 7

External merge sort typically uses a hybrid sort-merge strategy.

In the sorting phase, chunks of data small enough to �t in main
memory are read, sorted, and written out to a temporary �le.

In the merge phase, the sorted sub�les are combined into a single
larger �le.

Raimondas �iegis Lecture 7

External merge sort typically uses a hybrid sort-merge strategy.

In the sorting phase, chunks of data small enough to �t in main
memory are read, sorted, and written out to a temporary �le.

In the merge phase, the sorted sub�les are combined into a single
larger �le.

Raimondas �iegis Lecture 7

External merge sort typically uses a hybrid sort-merge strategy.

In the sorting phase, chunks of data small enough to �t in main
memory are read, sorted, and written out to a temporary �le.

In the merge phase, the sorted sub�les are combined into a single
larger �le.

Raimondas �iegis Lecture 7

We sort N data elements and they are written in external �le F .

Let's assume that only M elements �t into main memory.
▶ Chunks of size M are read from F and sorted by using some

fast sorting algorithm (e.g. Quicksort).

These chunks are written in turn to temporary �les F1,F2.

▶ In the merge phase, the sorted chunks of M length from �les
F1,F2 are combined into single chunks of 2M length and are
written in turn to temporary �les F3,F4

▶ This merge procedure is repeated till one sorted �le of length
N is obtained.

Raimondas �iegis Lecture 7

We sort N data elements and they are written in external �le F .

Let's assume that only M elements �t into main memory.
▶ Chunks of size M are read from F and sorted by using some

fast sorting algorithm (e.g. Quicksort).

These chunks are written in turn to temporary �les F1,F2.
▶ In the merge phase, the sorted chunks of M length from �les

F1,F2 are combined into single chunks of 2M length and are
written in turn to temporary �les F3,F4

▶ This merge procedure is repeated till one sorted �le of length
N is obtained.

Raimondas �iegis Lecture 7

We sort N data elements and they are written in external �le F .

Let's assume that only M elements �t into main memory.
▶ Chunks of size M are read from F and sorted by using some

fast sorting algorithm (e.g. Quicksort).

These chunks are written in turn to temporary �les F1,F2.
▶ In the merge phase, the sorted chunks of M length from �les

F1,F2 are combined into single chunks of 2M length and are
written in turn to temporary �les F3,F4

▶ This merge procedure is repeated till one sorted �le of length
N is obtained.

Raimondas �iegis Lecture 7

Example

We have a set of data saved in �le F , the length of it is equal to
N = 29:

(4, 5, 2, 8, 4, 1, 7, 9, 2, 3, 0, 3, 8, 6, 2, 4, 9, 3, 9, 5, 0,

4, 6, 2, 5, 3, 5, 1, 0).

Let us assume that M = 3, then the �rst sorting step is
implemented in the following way:

M = 3 :

F1 = (2, 4, 5 | 2, 7, 9 | 2, 6, 8 | 0, 5, 9 | 3, 5, 5)
F2 = (1, 4, 8 | 0, 3, 3 | 3, 4, 9 | 2, 4, 6 | 0, 1)

Raimondas �iegis Lecture 7

Example

We have a set of data saved in �le F , the length of it is equal to
N = 29:

(4, 5, 2, 8, 4, 1, 7, 9, 2, 3, 0, 3, 8, 6, 2, 4, 9, 3, 9, 5, 0,

4, 6, 2, 5, 3, 5, 1, 0).

Let us assume that M = 3, then the �rst sorting step is
implemented in the following way:

M = 3 :

F1 = (2, 4, 5 | 2, 7, 9 | 2, 6, 8 | 0, 5, 9 | 3, 5, 5)
F2 = (1, 4, 8 | 0, 3, 3 | 3, 4, 9 | 2, 4, 6 | 0, 1)

Raimondas �iegis Lecture 7

Then the merging steps are implemented

M = 6 :

F3 = (1, 2, 4, 4, 5, 8 | 2, 3, 4, 6, 8, 9 | 0, 1, 3, 5, 5)
F4 = (0, 2, 3, 3, 7, 9 | 0, 2, 4, 5, 6, 9)
M = 12 :

F1 = (0, 1, 2, 2, 3, 3, 4, 4, 5, 7, 8, 9 | 0, 1, 3, 5, 5)
F2 = (0, 2, 2, 3, 4, 4, 5, 6, 6, 8, 9, 9)

M = 24 :

F3 =

F4 =

M = 29 :

F =

Raimondas �iegis Lecture 7

Let us estimate the ammount of data transfered from external
memory to internal memory and back.

These transfers between internal and external memory make the
main part of running time.

For simplicity of analysis we assume that N = 2kM.

At each stage N/M packets are transfered between internal and
external memory.

The number of stages is (k + 1) thus the total number of
transfered packets is equal to

N

M
log

(N

M

)
.

Raimondas �iegis Lecture 7

Let us estimate the ammount of data transfered from external
memory to internal memory and back.

These transfers between internal and external memory make the
main part of running time.

For simplicity of analysis we assume that N = 2kM.

At each stage N/M packets are transfered between internal and
external memory.

The number of stages is (k + 1) thus the total number of
transfered packets is equal to

N

M
log

(N

M

)
.

Raimondas �iegis Lecture 7

Let us estimate the ammount of data transfered from external
memory to internal memory and back.

These transfers between internal and external memory make the
main part of running time.

For simplicity of analysis we assume that N = 2kM.

At each stage N/M packets are transfered between internal and
external memory.

The number of stages is (k + 1) thus the total number of
transfered packets is equal to

N

M
log

(N

M

)
.

Raimondas �iegis Lecture 7

