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In this lecture, we will consider in detail the problem of �nding the
shortest path between the vertices of a graph. This is a very
frequently solved logistics problem, and it is important to examine
the main methods for solving it

First, we will present the most important de�nitions, many of which
you have already studied in discrete mathematics lectures.
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Graphs

Let us have a set of vertices V =
{
v1, v2, . . . , vN

}
and a set of

edges E =
{
e1, e2, . . . , eK

}
.

An edge is a pair of vertices ej = (v1j , v2j).

Graph is denoted by G = (V ,E ).

The simplest example of a graph is a map of a country's roads:
cities and towns form a set of vertices, and roads form a set of
edges.
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If the edges ej = (v1j , v2j) and ek = (v2j , v1j) are di�erent (the
direction of the connection is also important), then they are called
directed, and the graph consisting of such edges is called directed

graph.

On city roads, we also encounter a similar situation where only
one-way tra�c is allowed on the street.
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Real numbers can be assigned to the edges of a graph that evaluate
distance, time, weight and similar attributes.

Such a graph is called weighted.

We will denote the weight of the edge ej ∈ E by w(ej).

The set of neighbors of vertex v is de�ned by

N(v) =
{
u : u ∈ V , (u, v) ∈ E or (v , u) ∈ E

}
and it is called the neighborhood of vertex v .

The degree of a vertex v is denoted by deg(v) and it is equal to the
number of its neighbors.
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Examples of some important cases of graphs are presented in this
�gure .
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Figure: Examples of graphs: a) undirected graph, |V | = 7, |E | = 7, the
degree of vertices v1, v3, v4 is equal to 3, the degree of vertices v2, v5 is
equal to 2, v6 and end vertex, v7 is an isolated vertex, b) directed graph,
|V | = 4, |E | = 6, c) weighted graph, |V | = 6, |E | = 8.
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A set of vertices
p =

{
vi0 , vi1 , . . . , vik

}
is called a path if all adjacent vertices are connected by edges, i.e.

(vij , vij+1) ∈ E , j = 0, 1, . . . , k − 1 .

The graph is called connected if for each pair of vertices x and y of
the graph, there is a path joining x and y .

For example, if we have a road map and the graph is connected,
then it is possible to drive from any city or settlement to another
one.

During spring �oods, some settlements become inaccessible.
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Let's consider a weighted graph. The length of a path p is de�ned
as

W (p) =
k−1∑
j=0

w
(
vij , vij+1

)
.

In the case where the weights of the edges of a graph are not
speci�ed, the path length is the number of edges on the path.

The shortest path connecting two vertices a, b ∈ V of the graph G
is the path

p =
{
a, vi1 , . . . , vik , b

}
,

satisfying the condition

W (p) ⩽ W (p
′
),

where p
′
is any other path connecting a and b.

If weights of all edges are positive numbers, then the shortest path
always exist.
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We will solve the problem of �nding the shortest paths between one
vertex s of a graph G and all other vertices v ∈ V of this graph.

It is clear that the shortest path exists only to vertices that are
reachable from s.

For graphs with di�erent structure, special e�cient shortest path
�nding algorithms are developed that best utilize information about
the graph structure.
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Now let's introduce some more notations.

Let d [v ] denote the length of the best path already found from
vertex s to vertex v (this onformation is dynamicaly updated during
search algorithm).

Let π[v ] denote the vertex from which we reach the vertex v in the
already known shortest path.

Let δ(s, v) denote the length of the shortest path from vertex s to
vertex v .
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In graphs (as in real road maps), the triangle inequality is not
necessary valid. It states that the length of the edge connecting
two vertices a and b is not greater than the length of the path
passing through one (or several) intermediate vertices.

However, it is easy to prove two important properties of shortest
paths, they make a basis for algorithms that are used to construct
the shortest paths.
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1. Consider the shortest path connecting vertices s and v . Let it
consist of several intermediate paths, e.g. connecting s with a, then
a with b, and �nally b with v . Those intermediate paths can
connect a few inner vertices.

Then all intermediate paths are also shortest paths connecting the
corresponding vertices:

δ(s, v) = δ(s, a) + δ(a, b) + δ(b, v).

The proof is simple. If any intermediate path is not the shortest,
then we can replace it with the shortest one and then the path
δ(s, v) will be shortened. But this cannot be the case, because this
path is the shortest.
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2. Let us take any three vertices of the graph a, b and c . Then the
triangle inequality is true

δ(a, b) ≤ δ(a, c) + δ(c , b).
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In all the algorithms presented in this lecture we will use the
following basic operation, which is designed to re�ne the shortest
path approximation:

Relax (u, v ,w) :

if d [v ] > d [u] + w(u, v) :

d [v ] = d [u] + w(u, v)

π[v ] = u

It is easy to verify that such an operation is safe:
if d [u] ≥ δ(s, u), then d [v ] ≥ δ(s, v).
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Now we will present one quite general structure of the shortest path
�nding algorithms.

It is always useful to construct a new algorithm by using a clear
�xed scheme.

Initialize :

d [u] = ∞, π[u] = s, ∀u ∈ V

d [s] = 0

Repeat :

Select an edge (u, v)

Relax(u, v ,w)

Until all edges have d [v ] ≤ d [u] + w(u, v)
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It is clear that the main goal of every algorithm is to create an
e�cient edge selection order.

In the worst case, when we check all edges of the graph many
times, the complexity of the algorithm is exponential (such
algorithms are ine�cient).
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Let us consider a directed, weighted graph G = (V ,E ) with no
cycles (DAG).

We will �nd the shortest paths from s to all other vertices of the
graph, which are reachable from s.

1. First, we topologically sort the vertices of the graph G . The
complexity of this step is

Θ(|V |+ |E |).

2. Second, in the general scheme for construction shortest paths,
we visit vertices v in sorted order and modify the values of each
neighbor of v . The complexity of this stage is also equal to

Θ(|V |+ |E |).

We have developed an e�cient algorithm for solving the shortest
path problem when the graph has a special DAG structure.
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Dijkstra algorithm

Now we will consider a more general case of graphs where we only
know that the weights of all edges of the graph are positive
numbers.

Let S be the set of vertices to which we have already found the
shortest path. Initially, this set includes only the initial vertex s.

When executing the algorithm, at each step we add one new vertex
to the set S .

In the set Q we store the vertices to which the shortest path is not
yet known.
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Dijkstra (G ,w , s) :

Initialize :

S = {s}, Q = V \ S
d [u] = ∞, π[u] = s, ∀u ∈ Q

d [s] = 0, d [u] = w(s, u),∀u ∈ Q : (s, u) ∈ E

while Q ̸= ∅ :

u = Extract_Min (Q)

S = S ∪ {u}
for each v ∈ Adj[u] ⊂ Q :

Relax(u, v ,w)
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1. We store the elements of the set Q using a binary min heap
structure. The root of the heap stores the vertex with the smallest
value d [v ]

2. The algorithm is based on a greedy strategy. Theoretical analysis
con�rms that such an algorithm calculates the shortest paths from
a given vertex to all remaining vertices of the graph G .
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Complexity of the Dijkstra algorithm

1. Initial construction of the binary heap requires Θ(|V |)
operations.

2. Remove from the heap Q the vertex to which the shortest path
is known, the total costs of this part of the algorithm are given by
Θ(|V | log |V |).

3. The costs of Relax operation are equal to Θ(|E |).
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Example: �nd the shortest paths in the directed graph

We have the wighted directed graph:
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Figure: The weighted directed graph.
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The details of search procedure are de�ned as:

i = 1 : S =
{
v1, v3

}
,

d = (0, 70, 50, 65, 100, ∞), π = (1, 1, 1, 3, 1, 1) ,

i = 2 : S =
{
v1, v3, v4

}
,

d = (0, 70, 50, 65, 95, 110), π = (1, 1, 1, 3, 4, 4) ,

i = 3 : S =
{
v1, v3, v4, v2

}
,

d = (0, 70, 50, 65, 95, 90), π = (1, 1, 1, 3, 4, 2) ,

i = 4 : S =
{
v1, v3, v4, v2, v6

}
,

d = (0, 70, 50, 65, 94, 90), π = (1, 1, 1, 3, 6, 2) ,

i = 5 : S =
{
v1, v3, v4, v2, v6, v5

}
,

d = (0, 70, 50, 65, 94, 90), π = (1, 1, 1, 3, 6, 2).
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