
Introduction: examples of algorithms

and basics of complexity analysis

Raimondas �iegis

Department of Mathematical Modelling, email: rc@vgtu.lt

September 4 d., 2023

Raimondas �iegis Lecture 1



1. Textbook (see references)

R. �iegis. Duomenu� strukt	uros, algoritmai ir ju� analiz
e. Vilnius,
"Technika", 2007.

2. Textbook ( with pdf, see references )

T. Cormen, C. Leiserson, R. Rivest, C. Stein. Introduction to
algorithms. The MIT Press, 2009.

3. Textbook (with pdf, see references)

T. Cormen. Algorithms unlocked. The MIT Press, 2013.

3. Video materials:

https://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-006-introduction-to-algorithms-fall-2011/lecture-videos/

Raimondas �iegis Lecture 1



It is clear that in di�erent courses of computer science, mathematics
and other subjects you've already studied many algorithms.

We simply say that any algorithm is a set of actions and rules, such
that after performing them all we achieve our goal (we solve the
given task).

It is easy to �nd many interesting examples around us.

1. You want to prepare a special pizza for a lunch.

We take a book of culinary recipes, it describes all steps, that
should be done and in a speci�c sequence. So we have an algorithm
for cooking a tasty pizza.
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2. You need to pass the exam on "Theory of Algorithms". .

The corresponding algorithm can be used:

a) perform all laboratory work tasks,

b) solve the homework tasks,

c) pass the intermediate exam,

d) get positive evaluation of the session exam.

Everything looks simple and clear, just execute this algorithm in
given order.
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In this course, you will systematize the knowledge you already have
on various algorithms and will learn many new useful things:

a) how to create a new algorithm for the selected problem;

b) how to e�ectively implement algorithms (even a very good
algorithm can be underestimated if not implemented properly);

c) you will become familiar with algorithms for solving important
applied problems including search of information, data sorting,
transport logistics and complicated design tasks.
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Where are algorithms used?

We mention only few domains:

big data and analysis,
virtual reality,
arti�cial inteligence (AI),
arti�cial neural networks, machine learning,
internet of things,
digital audio, visual and video information: storage and
transmission,
medicine,
robotics,
cryptocurrencies,
computer games ...
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Algorithm is a well-de�ned calculation procedure, it takes the initial
data, performes a �nite number of operations and gives the result.

We can understand the numerical procedure as a computer
program written in one of the programming languages.

A more precise de�nition is obtained when the computing device is
presented as the famous Turing machine. The latter theoretical
machine was created, when Turing provided a constructive
de�nition of the algorithm.
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Next we de�ne the algorithm complexity.

This information is very important when we want to predict how
long it will take to solve the problem with the selected algorithm on
a given computer (and there are many di�erent types of
computers).

Information about tomorrow's weather will be completely irrelevant
if the answer will be computed only after two days.

How long will it take for a malicious program to "hack" your bank
account password?

Is information about cryptocurrencies securely protected in the
blockchain?
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The amount of initial data is a very important characteristic of the
problem, because the more data is given, the more computer
memory is used to store this data, and the computations take
longer.

For example:

▶ The size of the vector X is equal to the number of its elements
n,

▶ The size of the matrix A with m rows and n columns, is equal
to mn,

▶ Let us take a graph G = (V ,E ), for which the number of
vertices V is n, and the size of the edge set E is m, then a
total number of data is equal to (m + n).
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Although the number of data characterizes the size of the task, it
does not yet describe the complexity of the algorithm completely.
Let's examine two important operations: addition of two matrices
A+ B and multiplication of two matrices AB .

Let us assume that we have square matrices of size n × n.

Let us consider the matrix addition A+ B

C = A+ B, C = (cij), 1 ⩽ i , j ⩽ n ,

cij = aij + bij .

We perform n2 summation operations.
This number of operations is of the same order as the number of
initial data, since the number of coe�cients for both matrices is
2n2.
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Next let us consider the multiplication of two matrices

cij =
n∑

k=1

aikbkj , 1 ⩽ i , j ⩽ n .

In total we compute n3 multiplication and n2(n − 1) addition
operations, or (2n3 − n2) arithmetical operations.

We can make an important conclusion that the complexity of
multiplication of matrices is one order larger than for matrix
addition.

The complexity of both operations is estimated by using the same
metric � the number of arithmetical operations.
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However, not all algorithms are suitable for this measure.
For example, in data sorting and search algorithms the most
important actions are comparing data and swapping two elements
of the set.

Therefore we consider a more general de�nition:

The complexity of any algorithm is equal to the number of basic
operations of this algorithm.

Then the size of the problem is equal to the complexity of the
known best algorithm used to solve it.
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Let us recall some simple mathematical results, which greatly
facilitate the analysis of algorithms.

Very often the same algorithm is used to solve a given problem with
various initial data.

For example, a company re-sorts information (data records) about
their customers every day. As we will see data retrieval is in
particular e�cient when the data is already sorted.
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1. The best case complexity

A given algorithm can be particularly e�cient for some types of
data. It is important to know how quickly we can solve such tasks
and be able to recognize such data in advance.

This estimate is also called optimistic.

Let Dn be a set of all cases of initial data.
There are n elements in each collection dm:

Dn = {dm : dm = (a1, a2, . . . , an), aj ∈ A, j = 1, 2, . . . , n } .

Denote by T (dm) a complexity of the algorithm for a speci�c
collection of data dm.

The best case complexity is given by

TG (n) = min
dm∈Dn

T (dm) .
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2. The worst case complexity

The given algorithm may be ine�cient for some types for data. It is
important to know how long we may have to wait for the result and
be able to identify such data.

This estimate is also called pessimistic.

The complexity of the worst case is de�ned as

TB(n) = max
dm∈Dn

T (dm) .
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3. The average complexity

The given algorithm may be ine�cient for some types for data, but
often such sets are very few. Therefore, the most important
information for most users is to know how long it takes on average
to wait for the result. Such information allows a rational usage of
human and hardware resources.

The avarage case complexity of the algorithm is given by

TV (n) =
1

|Dn|
∑

dm∈Dn

T (dm) ,

Examples of such estimates will be given for most algorithms
presented in our lectures.
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Basic methods for development of algorithms

Each day new problems are formulated in our virtual reality.

In many cases they are nontrivial and it is not su�cient to use
existing algorithms to solve them.

Thus we should be ready to develop new algorithms suited for the
given problem.

It is important to know how to attack such challenges, what
training is needed and how long the studies will take.

The good news is that only a few basic methods exist for
development of e�cient algorithms. Thus we always have a short
list of starting points.

Raimondas �iegis Lecture 1



Basic methods for development of algorithms

Each day new problems are formulated in our virtual reality.

In many cases they are nontrivial and it is not su�cient to use
existing algorithms to solve them.

Thus we should be ready to develop new algorithms suited for the
given problem.

It is important to know how to attack such challenges, what
training is needed and how long the studies will take.

The good news is that only a few basic methods exist for
development of e�cient algorithms. Thus we always have a short
list of starting points.

Raimondas �iegis Lecture 1



Basic methods for development of algorithms

Each day new problems are formulated in our virtual reality.

In many cases they are nontrivial and it is not su�cient to use
existing algorithms to solve them.

Thus we should be ready to develop new algorithms suited for the
given problem.

It is important to know how to attack such challenges, what
training is needed and how long the studies will take.

The good news is that only a few basic methods exist for
development of e�cient algorithms. Thus we always have a short
list of starting points.

Raimondas �iegis Lecture 1



No clouds are in the blue sky?

Unfortunately, this does not mean that familiarization with the
basic methods will guarantee that without e�orts you will be able
to construct e�cient algorithms for any new problem.

I don't promise that you won't have to read textbooks and solve
practical programming tasks (and more is better).

I don't promise that in one month you will be able to rediscover by
yourself the existing most famous algorithms.

But You will see that parctically all algorithms in Top 10 list are
developed by using these methods.

I hope, that this note is already a strongly motivating argument.
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Splitting of the problem (Divide-and-Conquer method)

Most fast algorithms are developed by using the following simple
idea � divide a task into smaller tasks, solve them and construct a
solution of the initial full problem.

We should answer the following two questions:

1. How to divide the task into a �nite number of smaller tasks?

2. How to reduce the number of smaller tasks, since the direct
analysis of all smaller tasks may fail even with the fastest
supercomputers.
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Testing of all cases

Let us consider a simple but powerfull method, which is based on
complete checking of all cases of tasks. This method became
popular with the advent of computers.

An important advantage of this strategy is that, after considering
all options, no additional calculations are required.

How to determine the age of three children?

John and Peter are good friends and they met today. OK, the last
their meeting was quite a long time ago...

During conversation Peter explained that this day is very special for
him, because all three his children � Inga, Julia and Justin �
celebrate their birthdays. Peter suggested to John, who is a
professional mathematician, to guess the age of each child.

Raimondas �iegis Lecture 1



Testing of all cases

Let us consider a simple but powerfull method, which is based on
complete checking of all cases of tasks. This method became
popular with the advent of computers.

An important advantage of this strategy is that, after considering
all options, no additional calculations are required.

How to determine the age of three children?

John and Peter are good friends and they met today. OK, the last
their meeting was quite a long time ago...

During conversation Peter explained that this day is very special for
him, because all three his children � Inga, Julia and Justin �
celebrate their birthdays. Peter suggested to John, who is a
professional mathematician, to guess the age of each child.

Raimondas �iegis Lecture 1



Testing of all cases

Let us consider a simple but powerfull method, which is based on
complete checking of all cases of tasks. This method became
popular with the advent of computers.

An important advantage of this strategy is that, after considering
all options, no additional calculations are required.

How to determine the age of three children?

John and Peter are good friends and they met today. OK, the last
their meeting was quite a long time ago...

During conversation Peter explained that this day is very special for
him, because all three his children � Inga, Julia and Justin �
celebrate their birthdays. Peter suggested to John, who is a
professional mathematician, to guess the age of each child.

Raimondas �iegis Lecture 1



Testing of all cases

Let us consider a simple but powerfull method, which is based on
complete checking of all cases of tasks. This method became
popular with the advent of computers.

An important advantage of this strategy is that, after considering
all options, no additional calculations are required.

How to determine the age of three children?

John and Peter are good friends and they met today. OK, the last
their meeting was quite a long time ago...

During conversation Peter explained that this day is very special for
him, because all three his children � Inga, Julia and Justin �
celebrate their birthdays. Peter suggested to John, who is a
professional mathematician, to guess the age of each child.

Raimondas �iegis Lecture 1



To make the task easier, Peter pointed out that the sisters are no
older than Justin, and Inga does not have a younger sister.

In addition he also informed that after multiplying the ages of all
three children, we get the number 36.

After some thought, John stated, that he still does not have
enough information.

Then Peter said that the sum of the years of all three children's
ages coincides with the number of windows of the house, by which
they stand.

John thought again and stated that the new information is really
very important, yet it is not su�cient to tell the answer. Therefore,
he needs a little help.

New Peter's remark was short � the eyes of the eldest child are blue.
Upon learning this, John immediately told the age of each child!
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they stand.

John thought again and stated that the new information is really
very important, yet it is not su�cient to tell the answer. Therefore,
he needs a little help.

New Peter's remark was short � the eyes of the eldest child are blue.
Upon learning this, John immediately told the age of each child!
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From the �rst condition we learn, that the product of the ages of
three children equals 36. It is easy to verify that there are only
eight di�erent options when this condition is met. They are given
in the table.

Table: Eight options, when the product equals 36

V1 V2 V3 V4 V5 V6 V7 V8

Inga 1 1 1 1 1 2 2 3
Julia 1 2 3 4 6 2 3 3
Justin 36 18 12 9 6 9 6 4
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We assume that John knows how many windows has a house where
both friends met.
So from the second condition he founds out what the sum of the
children's years is equal to.

But he still didn't have enough information to tell the answer.

We compute the sums of ages for each option:

1+ 1+ 36 = 38, 1+ 2+ 18 = 21,

1+ 3+ 12 = 16, 1+ 4+ 9 = 14,

1+ 6+ 6 = 13, 2+ 2+ 9 = 13,

2+ 3+ 6 = 11, 3+ 3+ 4 = 10.

Now it is clear that this sum of years is equal to 13, because in all
other cases John would already know the age of each child.
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Two options remain (1, 6, 6) and (2, 2, 9).

Since Justin is the eldest child only in the second case (that his
eyes are blue, of course, does not matter), we conclude that Peter
is raising twins Inga and Julia, who have turned two years old, and
nine-year-old son Justin.
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Security of information, passwords

In most cases we are looking for new algorithms with the minimal
complexity. But now we give an example when the large complexity
of the full search (so called brute force search algorithms) is a very
desirable and useful feature.

The secrecy and security of communications is currently a very
important task and its importance will only increase in the future.
Unauthorized reading of information and hybrid attacks on data
centers grows also fastly.

Security of modern public key cryptographic algorithms is based on
mathematical results for some very classical number theory
problems. The state of the art in this �eld still is such, that the
solution of these problems is possible only after a complete
re-selection of all cases, and the total number of di�erent options is
so high that it is not possible to "crack" the password while the
information is still relevant.
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The Recursion Method

The object (task, data structure) is de�ned by using recurrences if
the de�nition is based on the smaller objects of the same structure.

Factorials. In mathematics, the factorial of a non-negative integer
n ∈ N, denoted by n!, is the product of all positive integers less
than or equal to n.
The recurrence de�nition can be given as:

n! =

{
n · (n − 1)!, if n > 0,

1, if n = 0.

It follows from this de�nition that

n! = n · (n − 1) · (n − 2) · · · 2 · 1 .
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Fibonacci numbers. Fibonacci numbers are a sequence of
numbers where every number is the sum of the preceding two
numbers.
They are de�ned by:

fn =

{
fn−1 + fn−2, if n > 1,

f0 = 1, f1 = 1 .

Task 1. Compute f4 value.

Task 2. This task is more complicated: compute f30 and f31 values.
What conclusion You can make?
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We will show how recursion helps to solve logical games and
puzzles.

The Towers of Hanoi is a mathematical game or puzzle consisting
of three rods and a number of disks of various diameters, which can
slide onto any rod.
The puzzle begins with the disks stacked on one rod in order of
decreasing size, the smallest at the top, thus approximating a
conical shape. The objective of the puzzle is to move the entire
stack to the last rod, obeying the following rules:

1. Only one disk may be moved at a time.

2. Each move consists of taking the upper disk from one of the
stacks and placing it on top of another stack or on an empty rod.

3. No disk may be placed on top of a disk that is smaller than it.
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A B C

We can solve this problem by applying the following strategy:

First, we move the (n− 1) top discs of A on the B rod, and we use
the empty rod C as an auxiliary one.

Then we move the largest disc of A on C rod.

A B C
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In the last step, by applying the same algorithm we move the discs
from B onto C and use A as an auxiliary rod.

A B C
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Recursive algorithm to solve the problem of Hanoi towers

HanoiTowers (n, A, B, C)
begin

(1) if ( n > 0 )
(2) HanoiTowers (n-1, A, C, B);
(3) move (A, C);
(4) HanoiTowers (n-1, B, A, C);
(5) end if

end HanoiTowers
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Divide-and-conquere method

1. This method recursively breaks down a problem into two or
more smaller subproblems.

2. We �nd solutions of all smaller subproblems.

3. From them we make the solution of the whole problem.

Smaller subproblems again can be solved by applying the
divide-and-conquere algorithm.

The recursive division is done until the received tasks are easily
solved.
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