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The dynamic programming method

Let us discuss why variant reselection algorithms are often
ine�ective. This happens not only because the number of cases is
very high, but also because a number of di�erent cases is much less
than a number of suproblems generated by direct solution
algorithms. The same cases are generated and
checked/recalculated many times.

For example recall the recursive algorithm for computation of
Fibonacci numbers

F (n) = F (n − 1) + F (n − 2).
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The �gure shows a progress of computations according recursive
algorithm when n = 20.

Fib(20)

Fib(19) Fib(18)

Fib(18) Fib(17) Fib(17) Fib(16)

Fib(17) Fib(16)

We see that the same cases are computed many times, and the
complexity of this algoritm grows very fast.
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The given recursive algorithm for computation of Fibonacci
numbers works according the "top-down algorithm design" strategy.

We start by specifying the largest value of the parameter F (n) and
then compute the solution by dividing the problem into successively
smaller subproblems (in our case we de�ne two new pieces at each
division step).

We can signi�cantly speed up the execution of this algorithm by
using memoization technique. The results of expensive function
calls are stored and returned back when the same inputs occure
again.
Sure, then we have to use additional memory resources (no such
thing as a free lunch).
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During practical work, compare the execution time (CPU time) of
both variants of the algorithm.

Also we ask to implement the iterative algorithm described by the
"bottom-up" principle.
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Dynamic programming method

The dynamic programming method also refers to simplifying a
complicated problem by breaking it down into simpler sub-problems
in a recursive manner.
This paradigm is recommended when the following conditions are
satis�ed:

1. For standard recursion methods the generated sub-problems
essentially overlap, so we solve the same tasks many times.

In the dynamic programming method, we store solutions of already
solved tasks and solve only new sub-problems (similar to
memoization paradigm).
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2. The more important is the second condition.

If some problem can be solved optimally by breaking it into
sub-problems and then recursively �nding the optimal solutions to
the sub-problems, then it is said that we have optimal substructure.

We assume that sub-problems can be nested recursively inside
larger problems and there is a relation between the optimal value of
the larger problem and the values of the sub-problems. This
relationship is called the Bellman equation.

The Bellman equation enables us to reduce the total number of
subproblems essentially.
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In Divide-and-conquere algorithms all sub-problems are generated in
top-down fashion, i.e. the full problem is divided in few smaller
subproblems and procedure is repeated recursively.

In Dynamic programming algorithms �rst smallest sub-problems are
solved, the obtained optimal solutions are used to solve larger
sub-problems in a bottom-up fashion. Finally, we �nd the optimal
solution of the full problem.

The dynamic programming algorithm considers only those
sub-problems, which may be required to de�ne an optimal strategy
(the Bellman condition).
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Matrix�chain multiplication

We wish to construct the product of n matrices A1A2 · · ·An, where
Ai is a pi−1 × pi size matrix.

For example, engineering, virtual reality, animation applications
often have to multiply long chains of large size matrices.

Matrix multiplication is not commutative, but is associative; and we
can multiply only two matrices at a time.

There are numerous ways to multiply this chain of matrices. They
will all produce the same �nal result, however they will take more or
less time to compute, based on which particular matrices are
multiplied and in what order.
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Recall, that multiplication of n ×m and m × k size matrices AB
requires to compute 2nmk arithmetic calculations.

Let us assume that we multiple three matrices A1A2A3 of sizes
10× 200, 200× 4 and 4× 80.

This result can be calculated in two ways shown below.

1. (A1A2)A3, this way will require

2x10x200x4+ 2x10x4x80 = 16000+ 6400 = 22400

operations.

2. A1(A2A3), the second way will require

2x200x4x80+ 2x10x200x80 = 128000+ 320000 = 448000

operations. Thus the second way will require 20 times more
computations.
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Now we will solve this problem by using the dynamic paradigm.

First, we must �nd the Bellman optimality equation and show, that
the matrix chain multiplication problem has an optimal
substructure, i.e. that the optimal solution of the full problem can
be computed by using the optimal solutions of embedded smaller
subproblems (of the same structure).

Let us denote the result of partial matrix chain multiplication by

Bi , j = AiAi+1 · · ·Aj .

Bi , j is a matrix of size pi−1 × pj .

Raimondas �iegis Paskaita 2



Now we will solve this problem by using the dynamic paradigm.

First, we must �nd the Bellman optimality equation and show, that
the matrix chain multiplication problem has an optimal
substructure, i.e. that the optimal solution of the full problem can
be computed by using the optimal solutions of embedded smaller
subproblems (of the same structure).

Let us denote the result of partial matrix chain multiplication by

Bi , j = AiAi+1 · · ·Aj .

Bi , j is a matrix of size pi−1 × pj .

Raimondas �iegis Paskaita 2



Now we will solve this problem by using the dynamic paradigm.

First, we must �nd the Bellman optimality equation and show, that
the matrix chain multiplication problem has an optimal
substructure, i.e. that the optimal solution of the full problem can
be computed by using the optimal solutions of embedded smaller
subproblems (of the same structure).

Let us denote the result of partial matrix chain multiplication by

Bi , j = AiAi+1 · · ·Aj .

Bi , j is a matrix of size pi−1 × pj .

Raimondas �iegis Paskaita 2



The optimal order of parenthesis (computations) can be de�ned by
the equality

A1A2 · · ·An = B1, kBk+1, n.

The last step of the optimal multiplication algorithm will require to
multiply matrices B1, k and Bk+1, n.

The complexity of this step is equal to 2p0pkpn arithmetic
computations.
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It is clear that in order to compute the result of the last stage we
must compute the matrices B1, k and Bk+1, n.

These sub-problems are of the same structure as the full problem
and therefore we can compute them in optimal way by using the
same algorithm.

Now we de�ne the Bellman equation.

Let us de�ne the number of aritmetic computations m(i , j) required
to multiply matrix chain AiAi+1 · · ·Aj in optimal way.
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It follows from the analysis above, that there exists the optimal
value of k , such that matrix chain AiAi+1 · · ·Aj multiplication can
be divided into two sub-chains.

We compute the multiplication of two matrices Bi , k and Bk+1, j in
optimal way

m(i , j) = m(i , k) +m(k + 1, j) + 2pi−1pkpj .

Since it is not known in advance what k must be selected, we get
the variational Bellman equation

m(i , j) =

0, i = j ,

min
i≤k<j

(
m(i , k) +m(k + 1, j)+2pi−1pkpj

)
, i < j .

For each m(i , j) the optimal value of k is stored in the element
p(i , j) of matrix P .
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Number m(1, n) de�nes the complexity of the optimal algorithm for
computation of matrix chain A1A2 · · ·An multiplication.
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Optimal order for multiplication of six matrices

Let us multiply matrices

A1A2A3A4A5A6,

where sizes of matrices are the following: 40× 50, 50× 20,
20× 4, 4× 15, 15× 25, 25× 35.

The dynamic programming algorithm computes iteratively the
values of diagonal elements of matrices M and P . It starts
computations from the main diagonal and moves forward to
neighbour diagonals.

In the Figure 1, elements for each diagonal are presented in
di�erent colors.
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a) matrix M b) matrix P

It follows that the optimal order of multiplications is de�ned as(
A1(A2A3)

)(
(A4A5)A6

)
.

The complexity of the optimal multiplication algorithm is equal to
45200 arithmetic computations.

Raimondas �iegis Paskaita 2



0 80000 24000 28800 35000 45200

0 8000 14000 21000 32000

0 2400 7000 15600

0 3000 10000

0 26250

0

1 1 3 3 3

2 3 3 3

3 3 3

4 5

5

a) matrix M b) matrix P

It follows that the optimal order of multiplications is de�ned as(
A1(A2A3)

)(
(A4A5)A6

)
.

The complexity of the optimal multiplication algorithm is equal to
45200 arithmetic computations.

Raimondas �iegis Paskaita 2



0 80000 24000 28800 35000 45200

0 8000 14000 21000 32000

0 2400 7000 15600

0 3000 10000

0 26250

0

Matrix M

As an example, we compute the value of m(2, 4). The sizes of
matrices A2,A3,A4 are de�ned as 50x20, 20x4, 4x15.

First we consider k = 2:

m(2, 2) +m(3, 4) + 2 · 50 · 20 · 15 = 0+ 2400+ 30000 = 32400,

the second possibility is k = 3:

m(2, 3) +m(4, 4) + 2 · 50 · 4 · 15 = 8000+ 0+ 6000 = 14000.

Thus the minimum value is obtained when k = 3, and the
computation order is the following (A2A3)A4.
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Greedy algorithms

We often �nd ourselves in situations where we have to make a
decision "here and now". This choice will also a�ect future results,
e.g. the company's pro�t or the duration of the trip. But to solve
this problem by using the other well known algorithms such as
divide and conquere, dynamic programming or full selection of
options we do not have possibilities (they would take too long).
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A greedy algorithm is any algorithm that follows the
problem-solving heuristic of making the locally optimal choice at
each stage.

In many problems, a greedy strategy does not produce an optimal
solution, but a greedy heuristic can yield locally optimal solutions
that approximate a globally optimal solution in a reasonable
amount of time.

We usually divide the search for the solution into n stages and at
each step we choose a solution from a small �nite number m of
options. Thus we only test small part of the all possible options.
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Greedy algorithms �nd a locally optimal solution in nm basic
operations, thus these algorithms are very fast.

We should repeat once more, that in most cases the locally optimal
solutions approximate a globally optimal solution with a reasonable
accuracy. Thus such greedy algorithms are only heuristcs.

However, there are important applications when greedy algorithms
de�ne the exact solution. We will study such applications later.
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How to calculate the optimal coin change?

Given an integer array of coins representing di�erent types of
denominations

V1 > V2 > . . . > Vm

and an integer sum G , the task is to �nd a way to make this sum
by using the minimum number of coins.

Thus we solve the following task:

min
(n1,...,nm)∈D

(n1 + n2 + . . .+ nm),

D = {n1V1 + n2V2 + . . .+ nmVm = G , nj ≥ 0}.
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Let us assume that Vm = 1, thus we allways can �nd at least one
combination to make the required sum G .

Assume that you have an in�nite supply of each type of coin.

The greedy algorithm. The idea is very simple:

First, we try to collect a change by using coins with largest
denominations, the number of such coins is equal to n1 = ⌊G/V1⌋,
then a bigger part of the remaining sum G1 = G − n1V1 is returned
by using coins with denomination V2 n2 = ⌊G1/V2⌋ and so on.

If at some stage of the algorithm Gj < Vj+1, then coins with
denomination Vj+1 are not used.

Raimondas �iegis Paskaita 2



Let us assume that Vm = 1, thus we allways can �nd at least one
combination to make the required sum G .

Assume that you have an in�nite supply of each type of coin.

The greedy algorithm. The idea is very simple:

First, we try to collect a change by using coins with largest
denominations, the number of such coins is equal to n1 = ⌊G/V1⌋,
then a bigger part of the remaining sum G1 = G − n1V1 is returned
by using coins with denomination V2 n2 = ⌊G1/V2⌋ and so on.

If at some stage of the algorithm Gj < Vj+1, then coins with
denomination Vj+1 are not used.

Raimondas �iegis Paskaita 2



Let us assume that Vm = 1, thus we allways can �nd at least one
combination to make the required sum G .

Assume that you have an in�nite supply of each type of coin.

The greedy algorithm. The idea is very simple:

First, we try to collect a change by using coins with largest
denominations, the number of such coins is equal to n1 = ⌊G/V1⌋,
then a bigger part of the remaining sum G1 = G − n1V1 is returned
by using coins with denomination V2 n2 = ⌊G1/V2⌋ and so on.

If at some stage of the algorithm Gj < Vj+1, then coins with
denomination Vj+1 are not used.

Raimondas �iegis Paskaita 2



Let us assume that Vm = 1, thus we allways can �nd at least one
combination to make the required sum G .

Assume that you have an in�nite supply of each type of coin.

The greedy algorithm. The idea is very simple:

First, we try to collect a change by using coins with largest
denominations, the number of such coins is equal to n1 = ⌊G/V1⌋,
then a bigger part of the remaining sum G1 = G − n1V1 is returned
by using coins with denomination V2 n2 = ⌊G1/V2⌋ and so on.

If at some stage of the algorithm Gj < Vj+1, then coins with
denomination Vj+1 are not used.

Raimondas �iegis Paskaita 2



Let us assume that we have a collection of coins

V1 = 25, V2 = 11, V3 = 5, V4 = 1.

Applying the greedy algorithm we compute that a change of 63
cents can be calculated as

63 = 2× 25+ 1× 11+ 2× 1,

thus 5 coins are used. It is easy to check that this solution is
optimal.

If the sum is equal to G = 15, then the greedy algorithm gives the
answer

15 = 1× 11+ 4× 1,

thus again we use 5 coins.

But it is easy to check that there exists a better solution with only
three coins: 15 = 3× 5.
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Discrete knapsack problem

Given a set of n items, each with a volume vj and a value pj ,
j = 1, . . . , n, determine which items to include in the collection so
that the total volume is less than or equal to a given limit V and
the total value is as large as possible.

The most common problem being solved is the 0-1 knapsack
problem, which restricts the number xi of copies of each kind of
item to zero or one.

Given a set of n items numbered from 1 up to n, each with a
volume vi and a value pi , along with a maximum volume capacity
V . We solve the following problem

max
(x1,...,xn)∈D

(x1p1 + x2p2 + . . .+ xnpn),

D = {x1v1 + x2v2 + . . .+ xnvn ≤ V , xj ∈ (0, 1)}.
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First, we de�ne a relative value of each item sj = pj/vj .

Next we sort items according the obtained relative values

s1 ≥ s2 ≥ . . . ≥ sn.

A greedy strategy. At each step, we try to put into the bag the
most valuable item.

If this item is too big to �t into the remaing empty place of the
bag, then we take the next item and repeat this procedure.
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Assume that we have eight items (vj , pj):

(25, 50), (20, 80), (20, 50), (15, 45),

(30, 105), (35, 35), (20, 10), (10, 45).

First we compute the relative value of each item

S =
{
2, 4, 2.5, 3, 3.5, 1, 0.5, 4.5

}
and sort them

(10, 45), (20, 80), (30, 105), (15, 45),

(20, 50), (25, 50), (35, 35), (20, 10).

Let us assume that a volume of our bag is equal to V = 80.

Applyting the greedy algorithm we put four most valuable items
into it, the total volume of all selected items is 75, and their value
is equal to 275.
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(10, 45), (20, 80), (30, 105), (15, 45),

(20, 50), (25, 50), (35, 35), (20, 10).

This combination is not optimal, since if we take the �rst three
items and then the �fth one, then the bag is fully �lled and the
value of all selected items is equal to 280.

Thus for this problem the greedy strategy de�nes only an heuristic.
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In conclusion we can state that an introduction is given for the
following �ve methods

testing of all cases,

recursion,

divide-and-conquer,

dynamic programming,

greedy search.

In fact exactly these methods will be used during all our lectures.
A more detailed analysis of each of them will be presented.
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Now let us consider a simple but very useful test problem. It can be
solved by using di�erent algorithms.

The construction of such algorithms is done by applying general
methods proposed above.
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We start by considering 1D problem

Assume that one-dimensional array A is given.

All elements A[i ], i = 1, . . . , n are positive integer numbers (natural
numbers).

We will say that A[j ] de�nes a peak, if

A[j − 1] ≤ A[j ], A[j ] ≥ A[j + 1], 1 < j < n.

This de�nition is modi�ed at the end points, e.g. A[1] is a peak, if
A[1] ≥ A[2] .
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Thus some element is a peak, if its neighbours are not larger than
it's value.

It is su�cient to check a local information in order to test the
existence of a peak at A[j ].

It is easy to prove that at least one peak always exists (do it
Yourself).
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Algorithm 1. Let us test all cases. We start a search from element
A[1], if A[2] > A[1], then A[1] is not a peak.

Then we continue the search procedure and test the condition
A[2] ≥ A[3]. If this condition is also not satis�ed we move forward
and test the next element A[3].

This process is continued till we �nd a peak.
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Next we estimate the complexity of the proposed algorithm. Let us
assume that with equal probability any element can de�ne the �rst
peak.

Then in the worst case all elements of A should be tested and
TB(n) = n.

The average case complexity is similar TV (n) =
1
2n (i.e. the

complexity depends linearly on the size of A).
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Algoritmas 2. It is based on the divide-and-conquer method.

We start a search from the middle element A[n/2]. If

A[n/2− 1] ≤ A[n/2], A[n/2] ≥ A[n/2+ 1],

then A[n/2] is a peak. It was su�cient to make a comparison only
twice.

Otherwise we continue our search and select that side of A in the
direction of which the inequality was not satis�ed.

If both directions are possible, the selection is done in random.

We note that after the �rst step a set of active elements is reduced
twice.

For example, we need to test only elements A[i ], i = 1, . . . , n/2− 1.
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The basic step is repeated while a peak is computed.

It is important to remenber that if A has only one element, then
this element de�nes a peak.
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Next we will estimate the complexity if this new algorithm.

Since after each iteration the remaining number of elements is
reduced twice, it is su�cient to make no more than log n iterations.

We get that the complexity of the second algorithm even in the
worst case is equal to

TB(n) = 2 log n.

Assume n = 1000000, then log n = 20, thus this algorithm is much
better than the �rst one.
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Next, let us consider a 2D version of this problem, when matrix A
has dimension mx n.

A peak element is at (i , j), if its neighbours in raw and column
directions are not larger than the element itself

A[i ][j ] ≥ A[i − 1][j ], A[i ][j ] ≥ A[i + 1][j ],

A[i ][j ] ≥ A[i ][j − 1], A[i ][j ] ≥ A[i ][j + 1].

This de�nition should be modi�ed at boundaries.
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Algoritmas 1. The greedy algorithm.

We select an element (i , j) as a starting point in our search.

If this element is not a peak, then we select the largest neighbour.

This procedure is continued till a peak is selected.

It is easy to prove that this greedy algorithm always leads to a peak
element.
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Let's consider an example. We start our search from element 12:
13 11 9 22
14 13 12 10
15 9 11 17
16 17 19 21

 .

The algorithm moves forward in the following way:
13 11 9 22
14 13 12 10
15 9 11 17
16 17 19 21

 .
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The logic of this greedy algorithm is simple, but the complexity of
the worst and average cases is proportional to Θ(nm).

Thus we should test a bigger part of all elements.
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Algoritmas 2. Divide-and-conquer strategy.

1. We select a middle column of the matrix j= m/2.

2. We �nd the largest element A(i , j) in this column.

3. We compare A(i , j) with neighbours at the same raw A(i , j − 1)
and A(i , j + 1).
If both neighbours are not larger, then (i , j) is a peak.

4. Otherwise, we select that half of the matrix, which contain the
largest element.

Thus the amount of remaining columns is reduced twice.

5. The basic search step is repeated in the new matrix.

If only one column is remained in the matrix, then its largest
element is a peak.
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Let's esimate the complexity of the algorithm in the worst case

T (n,m) = T (n,m/2) + Θ(n)

= T (n,m/4) + 2Θ(n)

· · ·
= T (n, 1) + log(m)Θ(n)

= log(m)Θ(n).

Explain how to modify the algorithm if m ≪ n ?
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