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In this lecture we consider three fast sorting algorithms. The
complexity of them is close to the optimal estimate O(N logN).

Raimondas �iegis Paskaita 6



Quicksort algorithm

Quicksort is an e�cient, general-purpose sorting algorithm. It is
still a very popular and commonly used in di�erent applications
algorithm.

We will show that its average complexity is O(N logN), and
Quicksort can be done in-place, requiring only small additional
amounts of memory to perform the sorting.
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Quicksort is a divide-and-conquer type algorithm.

A partition produces a division into two consecutive non empty
sub-sets, in such a way that no element of the �rst sub-set is
greater than any element of the second sub-set.

After applying this partition, Quicksort then recursively sorts the
sub-sets.
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Partitioning step.

We partition a set A into two sub-sets.

First, a key element aj is selected. It is called a division point or
pivot.

Next we reorder elements of A so that all elements with values less
than the pivot come before the division point,

while all elements with values greater than the pivot come after it.

Elements that are equal to the pivot can go either way.
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Sorting of sub-sets

If the sub-set has fewer than two elements, return.

Otherwise, apply Quicksort to this sub-set (recursion).

A popular modi�cation selects a small number M.

If the sub-set has fewer than M elements, sort it by some simple
sorting algorithm, e.g. Insert sort.
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Determination of the solution

Since no element of the �rst sub-set is greater than any element of
the second sub-set, thus by sorting sub-sets we �nish sorting all
elements of A.

No computations are done at this stage.
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Quicksort algorithm

QuickSort (l, r)
begin

(1) if ( l < (r - M) ) then

(2) Partition ( l, r, m );
(3) QuickSort ( l, m-1 );
(4) QuickSort ( m+1, r );

else

(5) if ( l < r ) SelectionSort (l, r);
end if

end QuickSort
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Partition (l, r, m )
begin

(1) v = al ;
(2) i = l; j = r;
(3) while ( i < j ) do

(4) while ( (aj ⩾ v) && (i < j ) ) j = j − 1;
(5) if ( i ̸= j ) then
(6) ai = aj ; i++;

end if

(7) while ( (ai ⩽ v) && (i < j ) ) i = i + 1;
(8) if ( i ̸= j ) then
(9) aj = ai ; j−−;

end if

end do

(10) ai = v ; m = i;
end Partition
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Let's sort a list

A = (11, 10, 16, 8, 19, 37, 9, 22, 19, 11).

11
 10
 16
 8
 19
 37
 9
 22
 19
 11


9
 10
 8
 11
 19
 37
 16
 22
 19
 11


8
 9
 10
 11
 11
 16
 19
 22
 19
 37


8
 9
 10
 11
 11
 16
 19
 19
 22
 37


The �rst element of any sub-set is used as a pivot.
Pivots are colored red, grey colored elements are swaped during

partition steps.
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Complexity of Quicksort algorithm

We are interested to �nd a number of comparisons LN required to
sort a given set of N elements.

During a partition step each element is compared with a pivot.

Thus a total number of comparisons depends only on sizes of
produced sub-sets.
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Let's consider the worst case, when the smallest element is selected
as a pivot.

Then we get the following equation

LB(N) = LB(N − 1) + N − 1 .

If a set contains only one element then it is already sorted:

L(1) = 0 .

By applying this relation (N − 1) times, we get

LB(N) =
N∑
i=2

(i − 1) =
N−1∑
j=1

j =
N2 − N

2
.

Thus in the worst case this algorithm is not faster than Insert sort
or Select sort algorithms.
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The most un-expected conclusion is that such a result follows for
already sorted sets (when the �rst element is selected as a pivot).
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Let's consider the best case, when at each partition step we select
the pivot element which divides a set into two sub-sets of equal
sizes.

Take N = (2m − 1). Then the number of comparisons satisfy the
relation:

LG (2
m − 1) =

2LG (2m−1 − 1) + 2m − 2, when m > 1,

0, when m = 1 .

Raimondas �iegis Paskaita 6



Let's consider the best case, when at each partition step we select
the pivot element which divides a set into two sub-sets of equal
sizes.

Take N = (2m − 1). Then the number of comparisons satisfy the
relation:

LG (2
m − 1) =

2LG (2m−1 − 1) + 2m − 2, when m > 1,

0, when m = 1 .

Raimondas �iegis Paskaita 6



Applying it (m − 2) times we get

LG (N) = 2m − 2+ 2 · (2m−1 − 2) + 22 · (2m−2 − 2) + . . .

+ 2m−2 · (22 − 2)

= (m − 1)2m + 2m − 2

= (N + 1) log(N + 1)− 2.

We note that for the Insert sort algorithm the complexity of the
best case is even better N.

But only for the best case.
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Quicksort algorithm is so popular since in the average case its
complexity is also very close to the best case

LV (N) = 1, 386N logN +O(N) .

Sorting is done in-place.
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It was explained above that a complexity of Quicksort algorithm is
only O(N2), when

a set of elements is almost sorted,

and the �rst element of a sub-set is selected as a pivot.

Thus the following two mod�cations of the base algorithm are
recommended:

1. At each recursion stage three elements of A are selected in
random ak , al and am and they are sorted.

Then a mid element is taken as a pivot.

2. Before starting the Quicksort algorithm we swap all elements of
A in random.

There is a big probability that sorting costs of such perturbed set
will be close to the average complexity of Quicksort.
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