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Abstract. This paper is devoted to investigation of one algorithm for control of the
accuracy of discrete approximations and singularity diagnostics. The algorithm is
based on calculation on embedded grids and Richardson’s formula giving asymptot-
ically exact estimation for numerical solution error. Application to the Rosenbrock
scheme with complex coefficients allows us to determine both the moment of exact
solution’s singularity and its type.
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1. Introduction

Requirements to adequacy of mathematical models grow with every year. Ac-
curacy aspects play the significant role in practice of mathematical modelling.
For testing numerical methods and for practical application of calculation’s
results the method of accuracy control is quite necessary.

The well known method of a posteriori accuracy control was offered by
the Richardson [8]. The detail review of practical aspects for application of
Richardson’s method can be found in monograph [10]. In practice, this method
is applied not so often and its potential possibilities obviously were not ap-
preciated by investigators. The reason is that Richardson offered his method
only for uniform grids.

During last few years so-called quasi-uniform grids were introduced and
used in calculation practice by our research group [5]. The Richardson method
for estimation the accuracy by calculations on embedded grids is absolutely
correct if family of quasi-uniform grids is exploited.

1 This work is partially supported by RFBR (projects 05-01-00152, 05-01-00144),
Russian Science Support Foundation, President supporting program (projects
1918.2003.1 and 1907.2004.9).
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2. Quasi-Uniform Grids

For the first time quasi-uniform grids were proposed and used by Samarskii
in 1952. Later this approach was transform to the following definition.

Let us choose a smooth strict monotone grid generating function x (ξ),
which satisfies the following three conditions:

1)
∣

∣

∣
x(q) (ξ)

∣

∣

∣
≤ Mq, q � 1; 2) x′ (ξ) ≥ m > 0; 3) x (0) = a, x (1) = b. (2.1)

A family of uniform grids ξn = n/N defined on interval (0, 1) generates one-
parameter family of quasi-uniform grids xn = x (ξn) on a chosen interval
(a, b). Quasi-uniform grids are easily adapted to singularity of the solution. In
particular, it is possible to construct quasi-uniform grid covering unbounded
domain. The last node of such grid is placed on infinity so right boundary con-
dition is taken into account correctly. This approach was successfully applied
by authors to solve a wide class of boundary and initially boundary-value
problems in unbounded domain [1, 2, 5].

3. Accuracy Control Algorithm

But the main advantage of using the family of quasi-uniform grids in calcula-
tions is the possibility to control the accuracy. Algorithm is the same for many
finite-difference methods: for numerical integration, solving systems of ODE
or PDE. Let us carry out two calculations on embedded uniform or quasi-
uniform grids with total number of nodes N and 2N . All nodes of smaller
grid are identical to even nodes of denser grid due to uniformity. Suppose
that we use numerical method with order of accuracy p. For smooth enough
solution the error can be decomposed into a sum of inverse powers of N . The
Richardson formula

∆2N =
U2N − UN

2p − 1
(3.1)

defines the the main term of such sum. This formula is asymptotically exact
when N → ∞ if we use uniform or quasi-uniform grids. So it gives the real
value of numerical solution error without knowledge of exact solution.

We can apply (3.1) as a single-step approximation correction formula

U = U2N + ∆2N + O
(

N−p−s
)

, s ∈ {1, 2} (3.2)

and increase the order of accuracy of approximation. In (3.2) s = 1 for non-
symmetrical difference schemes and s = 2 for symmetrical ones. Such enlarge-
ment of accuracy requires only few arithmetical operations and so it is very
cheap.

The algorithm of calculations with accuracy control is illustrated by Fig. 1.
We have carried out series of calculations on embedded grids every time dou-
bling the number of grid nodes and evaluating the error by Richardson’s
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Figure 1. Accuracy control algorithm.

method. The curve of numerical error dependence on a number of nodes in
double logarithmic scale is asymptotically close to the straight line with the
tangent of inclination angle equal to p. Any other values of inclination an-
gle indicate errors in program or not enough smooth solution. In this case
numerical results are possible non adequate.

If inclination angle is near to theoretical value then program is correct,
solution is smooth enough and we can carry out Richardson’s correction. Re-
sult of correction can be interpreted as calculation results obtained by using
a method with higher order of accuracy O (N−p−s).

The error of corrected solution again can be evaluated by the Richardson
formula, taking into account the new order of accuracy. Decreasement of the
error of corrected solution is substantially faster. Using the same number of
grid nodes we obtain much better accuracy. In order to increase the accuracy
we have done only few arithmetical operations.

The given Richardson’s correction method gives the accuracy on the level
of machine round-off error by using N = 1000 grid points. Applying the
base numerical algorithm without the Richardson correction we achieve the
round-off error only using unacceptably large number of grid points N ∼ 107.
Including into the program the described algorithm allows us to carry out
calculations efficiently with accuracy control. We consecutively double the
number of quasi-uniform grid nodes and carry out Richardson’s corrections.
The process is stopped when the required accuracy level is achieved.

4. Singularity Diagnostics

The natural continuation of accuracy control idea is the method of singularity
diagnostics. Let’s consider the Cauchy problem for ODE, exact solution of
which has the singularity:

du

dt
= βu1+ 1

β , u (0) = u0 > 0. (4.1)
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The exact solution of (4.1) is u = (t∗ − t)−β . If β > 0, then exact solution of
(4.1) u →

t→t∗
∞. If β ∈ (−1, 0) then the exact solution has singularity of a root

type and u′ →
t→t∗

∞. Such differential problems are hard for numerical solution

and we call them ill-conditioned to distinguish from stiff systems [4]. Exact
solution of (4.1) doesn’t exist at t > t∗.

Figure 2. Calculation results for Cauchy problem with singu-
larity of exact solution.

Fig. 2 illustrates the behaviour of numerical solution of (4.1) when dif-
ferent well-known difference schemes are applied. We chose β = 1, u0 = 1.
The exact solution has the vertical asymptotical line at t = 1. Abbreviation
”ERK” indicates Explicit Runge-Kutta schemes of the first, second and fourth
order of accuracy. It is well-known that for ERK schemes a numerical solution
of (4.1) exists at any time moment [3]. It is monotone and always positive. It
follows from Fig. 2 that all numerical solutions given by ERK schemes cross
the asymptote and define numerical solutions in area where the exact solution
doesn’t exist and so they are non-adequate. More over application of ERK for
numerical solution of ill-conditioned ODE leads to overflow in calculations.
Unfortunately the moment of overflow is not correlated with the moment of
singularity t∗. The similar behavior was demonstrated in tests by other ex-
plicit schemes. So they are unsuitable for numerical solution of ill-conditioned
problems and singularity diagnostics.

Let us consider implicit one-stage Rosenbrock [9] scheme for numerical
solution of the following ODE

du

dt
= f (u) . (4.2)

A general formula for obtaining discrete solution at the next temporal level is
the following

û = u + τRe k, (E − ατfu) k = f (u) , (4.3)
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here fu ≡ ∂f/∂u is the Jacobian of the system, E is the identity matrix. Even
if the ODE (4.2) is non-linear, the implementation of the scheme requires
to solve only linear algebraic system with definitely well-conditioned matrix.
It can be solved by some direct method (for example LU decomposition). So
transformation onto the next temporal level is carried out by limited number of
arithmetic operations, similar to explicit schemes. For this obvious advantage
Rosenbrock schemes are often called semi-implicit.

With respect to dependence of the solution on the parameter, the proper-
ties of one-stage Rosenbrock schemes (4.3) are different. There is one scheme
with complex-valued parameter α = (1 + i)/2 (CROS) having the unique
properties of accuracy and stability. The accuracy in this case is O

(

N−2
)

.
This scheme is absolutely stable and L2 stable, so it is suitable for solution of
very stiff systems. Just this scheme gives the best results on tests and can be
recommended for wide class of applications.

Numerical solutions, given by the Rosenbrock schemes for ill-conditioned
Cauchy problem (4.1), have quit different structure. The Rosenbrock schemes
with real coefficient give monotone increasing numerical solution, but after
definite moment numerical solution suddenly it changes the sign. In some
cases using of Rosenbrock schemes with a real coefficient also lead to numer-
ical overflow. This behavior is also inadequate to the behaviuor of the exact
solution. A structure of the numerical solution of CROS scheme is cardinally
different. Immediately after of singularity moment t = t∗ the numerical solu-
tion of CROS scheme is stabilized at the constant level u∗.

There is no numerical overflow when CROS scheme is applied for numer-
ical solution of ill-conditioned Cauchy problems. This is its first advantage.
The second advantage is the following. First it was noticed in numerical ex-
periments, and then theoretically shown that constant level u∗ depends on
time grid step τ or (which is the same for quasi-uniform grid) on the number
of grids nodes N . Theoretical investigation of the CROS scheme for numeri-
cal solution of ill-conditioned Cauchy problem for ODE resulted in following
theorems [6, 7].

Theorem 1. If exact solution of ODE has singularity of power type u ∼
(t∗ − t)−β, then numerical solution of CROS scheme is stabilized at the con-

stant level u∗ = [2N/(β + 1)]
β
.

While we carry out calculation with the accuracy control on embedded
uniform or quasi-uniform grids we have to compute the effective order of
accuracy

peff (t) =
ln ∆N (t) − ln ∆2N (t)

ln 2
. (4.4)

Theorem 2. Effective order of accuracy (4.4) of CROS scheme in the points
where exact solution is smooth (t < t∗) tends to theoretical value peff →

N→∞

2 .

At all points after singularity moment (t ≥ t∗) the effective order of accuracy
for CROS scheme is peff →

N→∞

−β.

So using CROS scheme in computations on embedded grids allows to deter-
mine not only the singularity moment, but also its type.
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The similar theoretical results were received for some other singularity
types, for example logarithmic. In this case peff →

N→∞

0 at any grid node after

the singularity moment t ≥ t∗.

5. Conclusions

Using quasi-uniform grids in calculation on embedded grids allows us to obtain
the a posteriori and asymptotically exact estimation of accuracy. Most well-
known standard programs now implements calculations with automatically
chosen step size, so grids are not quasi-uniform and accuracy estimation is
not asymptotically exact.

For calculation of ill-conditioned ODE’s the explicit schemes are unsuit-
able. In a class of implicit schemes the Rosenbrock scheme with complex
coefficient is outstanding. For example, it does not lead to numerical overflow
even if the exact solution tends to infinity.

Based on ideas of calculations with accuracy control the algorithm for
singularity diagnostics was constructed. Only one-stage Rosenbrock scheme
with complex coefficient has appeared to be suitable for such algorithm.

A program realizing the proposed algorithm allows to determine both the
moment of singularity and its type.

The proposed approach can be naturally extended to numerical solution
of systems of ODE’s and PDE’s or differential-algebraic systems.
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