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Abstract. We develop an efficient numerical algorithm for simulating three-di-
mensional isothermal Darcian flows through isotropic and homogeneous porous me-
dia. Such method is obtained by means of two consecutive procedures. Firstly, a
modified fractionary implicit Euler method is used to discretize the time variable,
decomposing the original problem in three families of nonlinear one-dimensional el-
liptic problems. Then, this three-level scheme is combined with a finite difference
spatial discretization in order to deduce the numerical algorithm. The nonlinear
systems of algebraic equations are solved with a quasi-Newton iteration technique,
leading to simple sets of tridiagonal linear systems for computing the final solution.
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1. Introduction

Prediction of fluid movement through unsaturated porous media is an im-
portant question which concerns to many hydrological processes, including
infiltration, soil moisture storage, evaporation, plant water uptake, ground-
water recharge, runoff and erosion (see [4, 5, 8]). The interest in water flow
phenomena has strongly increased in recent years due to the important role
it play in the transport of hazardous wastes towards phreatic layers, which
adversely affect the quality of subsurface environment (see [6]).

If we consider an isotropic and homogeneous porous medium, Darcian fluid
motion is assumed to obey the classical Richards equation (see [1, 3]). Let Ω
be a three-dimensional flow domain with boundary ∂Ω = Γ and set J = [0, T ]
as the time interval. Consider Richards’ equation in the form:
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∂θ (ψ)

∂t
= ∇ · [K (ψ)∇ψ (x, t)] +

∂K (ψ)

∂z
− S (ψ) , (x, t) ∈ Ω × J, (1.1)

with initial condition

ψ (x, 0) = ψ0 (x) , x ∈ Ω, (1.2)

and boundary conditions

ψ (x, t) = ψD (x, t) , (x, t) ∈ ΓD × J, (1.3)

− [K (ψ) (∇ψ (x, t) + ∇z)]nΓN
= σ (x,t) , (x, t) ∈ ΓN × J, (1.4)

where ψ (x, t) [L] is the pressure head, θ (ψ)
[

L3L−3
]

is the volumetric mois-

ture content, K (ψ)
[

LT−1
]

(K (ψ) ≥ K0 > 0) denotes the unsaturated hy-

draulic conductivity, S (ψ)
[

T−1
]

is a source/sink term (for example, the root
water uptake function in soil profiles), t [T ] is time and x ≡ (x, y, z) [L] refers
to the spatial dimensions. ΓD and ΓN indicate Dirichlet and Neumann type
boundary surfaces (ΓD ∪ ΓN = Γ ) and nΓN

is the outward unit normal vector
with respect to ΓN . The constitutive relationships θ (ψ), K (ψ) and S (ψ) are
defined by a set of nonlinear functions obtained heuristically, determining the
highly nonlinear nature of (1.1) (see [1, 4, 7] for a detailed description of these
expressions).

In this paper we develop an efficient numerical method for solving (1.1).
Firstly, Section 2 describes a modified fractionary implicit Euler scheme for the
time semidiscretization, which is combined in Section 3 with a finite difference
spatial approximation to deduce the method. In Section 4, a quasi-Newton
iteration technique is introduced in order to solve the nonlinear systems of al-
gebraic equations, describing the final numerical algorithm. Finally, Section 5
shows the numerical simulation of a lixiviation process in a variably saturated
porous medium.

2. Time Semi-Discretization

Suppose that the solution of equation (1.1) is approximated at time levels
0 = t1 < . . . < tS = T and let ∆tj = tj+1 − tj be the corresponding time
steps (j = 1, . . . , S − 1).

Firstly, we rewrite Richards’ equation as follows:

∂θ (ψ)

∂t
= A1 (ψ) + A2 (ψ) + A3 (ψ) − S (ψ) , (2.1)

where, omitting some functional dependencies for convenience,

A1 (ψ) =
∂

∂z

(

K
∂ψ

∂z

)

+
∂K

∂z
(2.2)

is the part of the differential operator which describes the vertical infiltra-
tion process (effects of pressure head in the z direction and transport due to
gravitation) and
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A2 (ψ) =
∂

∂y

(

K
∂ψ

∂y

)

, A3 (ψ) =
∂

∂x

(

K
∂ψ

∂x

)

(2.3)

can be viewed as the terms which define the respective infiltration processes
that take part in both dimensions of the horizontal plane (effect of pressure
head in the y and x directions).

Starting from an initial condition ψ0 (x) given by (1.2), we firstly consider
a modified fractionary implicit Euler method for discretizing the time variable,
in order to obtain approximations ψj+1 (x) to the state variable ψ (x) at the
(j + 1)-th time level. This technique decomposes the original parabolic pro-
blem in three families of nonlinear one-dimensional elliptic problems, genera-
lizing the time semi-discretization used in [6] for two-dimensional problems
of this kind. Setting the flow domain Ω = [0, a] × [0, b] × [0, c], we apply the
following three-staged procedure:

1. Given ψj (x), let ψ̃j+1 (x) be the solution of the two-parameter diffe-
rential equation (parameters are x, y)

θ̃j+1 − θj = ∆tj
{

A1

[

ψ̃j+1 (x̄, ȳ, z)
]

− S
(

ψj
)

}

, (2.4)

∀ (x̄, ȳ) ∈ [0, a]× [0, b] , z ∈ (0, c), which also satisfies corresponding boundary
conditions (1.3) or (1.4) at (x̄, ȳ, 0) and (x̄, ȳ, c), evaluated at t = tj+1.

2. Next, from the fictitious state ψ̃j+1 (x) obtained at the previous stage,

we define ψ̂j+1 (x) as the solution of

θ̂j+1 − θ̃j+1 = ∆tjA2

[

ψ̂j+1 (x̄, y, z̄)
]

, (2.5)

∀ (x̄, z̄) ∈ [0, a] × [0, c] , y ∈ (0, b). The solution satisfies corresponding boun-
dary conditions at (x̄, 0, z̄) and (x̄, b, z̄) for t = tj+1.

3. Finally, from the values of ψ̂j+1 (x), we obtain the approximations
ψj+1 (x) as solutions of

θj+1 − θ̂j+1 = ∆tjA3

[

ψj+1 (x, ȳ, z̄)
]

, (2.6)

∀ (ȳ, z̄) ∈ [0, b] × [0, c] , x ∈ (0, a), considering again suitable boundary condi-
tions at (0, ȳ, z̄) and (a, ȳ, z̄) with t = tj+1.

Notice also that the source/sink term S (ψ) in equation (2.4) is evaluated
at the previous time level, in order to improve the convergence rate of the
iteration procedure which is given in Section 4 (see [1]). Therefore, this time
discretization method can be viewed as a modification of the classical frac-
tionary implicit Euler rule. As S (ψ) is a Lipschitz function, this modified
fractional step scheme is also consistent with first order of accuracy and it
preserves a stability property under not severe restrictions on the time step
∆t. Such restrictions just depend on the Lipschitz constant of S (ψ), simi-
larly to the linearly implicit schemes proposed in [2] for semilinear parabolic
problems.
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3. Spatial Discretization

In order to develop a fully discretized model, we apply a finite difference
technique for approximating the spatial derivatives. Let Ωhxhyhz

be a mesh
of the flow domain, defined in the following way:

Ωhxhyhz
= {(xl, ym, zn) : l = 1, . . . , Nx, m = 1, . . . , Ny, n = 1, . . . , Nz} ,

0 = x1 < . . . < xNx
= a, hx = max

1≤l≤Nx−1
(xl+1 − xl) ,

0 = y1 < . . . < yNy
= b, hy = max

1≤m≤Ny−1
(ym+1 − ym) ,

0 = z1 < . . . < zNz
= c, hz = max

1≤n≤Nz−1
(zn+1 − zn) .

The discrete solution ψh is defined in the discrete domain Ωhxhyhz
and it is

denoted by ψl,m,n = ψh (xl, ym, zn) ' ψ (xl, ym, zn). We replace the spatial
derivatives by the following approximations:

∂K

∂z
(xl, ym, zn) '

Kl,m,n+1 −Kl,m,n−1

zn+1 − zn−1

, (3.1)

∂

∂z

(

K
∂ψ

∂z

)

(xl, ym, zn) '
Kl,m,n+1 +Kl,m,n

zn+1 − zn−1

ψl,m,n+1 − ψl,m,n

zn+1 − zn

−
Kl,m,n +Kl,m,n−1

zn+1 − zn−1

ψl,m,n − ψl,m,n−1

zn − zn−1

, (3.2)

and analogously for the second derivatives with respect to y and x, included in
(2.3). Applying these expressions to the original equations, the fully discretized
method on Ωhxhyhz

results:

θ̃j+1
n − θj

n

∆tj
=

1

∆zn

(

K̃j+1

n+1/2

ψ̃j+1

n+1 − ψ̃j+1
n

∆zn
− K̃j+1

n−1/2

ψ̃j+1
n − ψ̃j+1

n−1

∆zn−1

)

+
K̃j+1

n+1/2
− K̃j+1

n−1/2

∆zn

− Sj
n, (3.3)

for n = 2, . . . , Nz−1, where the position subindices l andm have been omitted
for clarity and the following notation introduced

∆zn =
zn+1 − zn−1

2
, ∆zn = zn+1 − zn, K̃j+1

n+1/2
=
K̃j+1

n+1
+ K̃j+1

n

2
.

The set of nonlinear equations (3.3) must be completed by adding some ex-
pressions for the extreme values n = 1, Nz, which depend on corresponding
boundary conditions at z = 0 and z = c.

Analogously, the discretization of (2.5) and (2.6) leads us to
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θ̂j+1
m − θ̃j+1

m

∆tj
=

1

∆ym

(

K̂j+1

m+1/2

ψ̂j+1

m+1−ψ̂
j+1
m

∆ym
−K̂j+1

m−1/2

ψ̂j+1
m −ψ̂j+1

m−1

∆ym−1

)

, (3.4)

θj+1

l − θ̂j+1

l

∆tj
=

1

∆xl

(

Kj+1

l+1/2

ψj+1

l+1
− ψj+1

l

∆xl
−Kj+1

l−1/2

ψj+1

l − ψj+1

l−1

∆xl−1

)

, (3.5)

for m = 2, . . . , Ny − 1 and l = 2, . . . , Nx − 1, together with some additional
equations for the values m = 1, Ny and l = 1, Nx, which come from the
discretization of specific boundary conditions at y = 0, y = b and x = 0,
x = a, respectively.

4. Iterative Resolution Procedure

Because of the nonlinear nature of (3.3), (3.4) and (3.5), an iterative method
must be used to obtain numerical approximations for these stages. The method
implemented in the present study makes use of the modified Picard (quasi-
Newton) iteration technique proposed in [7], which has been shown to provide
excellent results in terms of minimizing the mass balance error. According to
the method, it is possible to expand the value of θ at the new time, j+1, and
iteration level, k+ 1, in a truncated Taylor series with respect to ψ about the
expansion point ψj+1,k , leading to the expression:

θj+1,k+1 − θj

∆tj
= Cj+1,k ψ

j+1,k+1 − ψj+1,k

∆tj
+
θj+1,k − θj

∆tj
, (4.1)

where C
[

L−1
]

represents the soil water capacity, defined by

Cj+1,k =

[

dθ

dψ

]j+1,k

. (4.2)

Substituting the right-hand side of (4.1) into equation (3.3), we obtain the
following general matrix equation:

A
j+1,k
z ψ̃j+1,k+1 = b

j+1,k
z , (4.3)

where Az is a symmetric tridiagonal matrix, ψ̃ denotes the unknown vector
and bz represents the independent term vector. For each iteration, the final
system of linearized algebraic equations is solved by Gaussian elimination. As
exposed previously, we obtain similar linear systems for the y and x directions,
including corresponding unknown vectors ψ̂ and ψ, respectively.

Finally, using an expanded formulation, we can rewrite the systems (4.3)
as a set of uncoupled linear subsystems (one for each value of the indices l
and m):
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−
K̃j+1,k

n−1/2

∆zn−1

ψ̃j+1,k+1

n−1 +

(

∆zn

∆tj
C̃j+1,k

n +
K̃j+1,k

n+1/2

∆zn
+
K̃j+1,k

n−1/2

∆zn−1

)

ψ̃j+1,k+1
n

−
K̃j+1,k

n+1/2

∆zn
ψ̃j+1,k+1

n+1 =
∆zn

∆tj
C̃j+1,k

n ψ̃j+1,k
n −

∆zn

∆tj

(

θ̃j+1,k
n − θj

n

)

+
(

K̃j+1,k
n+1/2

− K̃j+1,k
n−1/2

)

−∆znS
j
n, n = 2, . . . , Nz − 1, (4.4)

together with two additional equations for n = 1, Nz, related to the discretized
boundary conditions.

The iteration procedure explained above, in combination with the finite
difference spatial approximation, leads to simple sets of tridiagonal linear
systems for computing the numerical solution. This special property of our
method contrasts with the typical banded structure of the systems which ap-
pear in the classical implicit methods (see [1, 3, 5, 8]), reducing drastically
the computational cost of the resolution process and allowing a natural im-
plementation in parallel devices with maximum speed-up.

5. Numerical Experiment

The numerical test described below corresponds to a simulation of a lixiviation
model which takes place from a contaminant source to an unconfined aquifer
with a pumping well. The geometry of the system is shown in the plant and
section views of Fig. 1, defining a flow domain Ω = [0, 260]× [−50, 50]× [0, 38].

a) b)

Figure 1. Plant and section views of the flow domain (dimensions are expressed in
meters).

As initial condition, we have considered a phreatic layer which varies linear-
ly from 28 m on the left margin of the aquifer to 26 m on the right one (i.e.,
ψ (x, 0) = 28−x/130− z). Moreover, ψ+ z = 28 and ψ+ z = 26 are assumed
as boundary restrictions for x = 0 and x = 260, respectively (y ∈ [−50, 50]).
The lixiviation process starts at a time in which the water table descends to
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Figure 2. Evolution of the pressure head ψ at the plane z = 20.
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Figure 3. Evolution of the moisture content θ at the plane y = 0.

20 m at the segment that contains the pumping well (x = 170, y = 0). Hence,
this segment is characterized by the boundary condition ψ + z = 20 along
the vertical below the phreatic layer (z ≤ 20), assuming the development of a
filtration line above its position (z > 20) (i.e., we impose ψ = 0 under satu-
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ration conditions, considering zero vertical flux for the unsaturated nodes).
Finally, a ψ = 0 condition is assumed at the contaminant source, assigning
impermeability restrictions on the other boundary surfaces.

Numerical results are described in Figs. 2 and 3. Note that, due to the
symmetry of the system with respect to the plane y = 0, we have considered
just one half of the flow domain in the simulation. At first, Fig. 2 represents
the evolution of ψ at the plane z = 20. From a given initial distribution
ψ (x, 0) = 8 − x/130, the pressure head shows a progressive growth at the
source position and the generation of a depression cone around the pump-
ing well. This process reveals the existence of a time-dependent flux between
these devices until the stationary state is reached. On the other hand, Fig. 3
describes the evolution of θ at the plane y = 0. In this case, the configuration
of the moisture content isolines shows a tracking front movement towards the
phreatic layer position. According to the numerical experiments, the steady
state is reached approximately 40 days after the beginning of the simulation.
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