
Mathematical Modelling and Analysis 2005. Pages 321–326

Proceedings of the 10th International Conference MMA2005&CMAM2, Trakai

c© 2005 Technika ISBN 9986-05-924-0

ON CONVEX OPTIMAL CONTROL

PROBLEMS

V. AZHMYAKOV and W.H. SCHMIDT

Institute for Automation Technology, Department of Electrical Engineering,
University of Magdeburg

PF 4120, D-39016 Magdeburg, Germany

Institute of Mathematics and Computer Sciences, University of Greifswald

Jahnstr. 15a, D-17487 Greifswald, Germany

E-mail: vadim.azhmyakov@e-technik.uni-magdeburg.de;

E-mail: wschmidt@uni-greifswald.de

Abstract. In this paper we propose a computational approach to a class of con-
strained optimal control problems (OCP’s). We apply discrete approximation pro-
cedures and proximal-based regularization techniques to convex OCP’s and describe
how to carry out the numerical calculations in the context of convex programming.
The presented approach makes it possible to obtain consistent approximate solu-
tions.
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1. Introduction

We concentrate on the constrained OCP

Φ(x(tf )) = min J(x(·), u(·))),

subject to ẋ(t) = f(t, x(t), u(t)) a.e. on [0, tf ], x(0) = x0,

u(t) ∈ U a.e. on t ∈ [0, tf ],

h(x(tf )) ≤ 0, q(t, x(t)) ≤ 0 ∀t ∈ [0, tf ],

∫ tf

0

s(t, x(t), u(t))dt ≤ 0.

(1.1)

Here, Φ : Rn → R is a continuously differentiable function,

f : [0, tf ] × R
n × R

m → R
n, h : R

n → R,

q : [0, tf ] × R
n → R, s : [0, tf ] × R

n × R
m → R

and x0 ∈ Rn is a fixed initial state. The initial OCP (1.1) contains target,
state and integral constraints. Let us assume that the given functions h and
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q(t, ·), t ∈ [0, tf ] are continuously differentiable. The function s is continuous
and the control set U is a compact and convex subset of Rm. Let

U := {u(·) ∈ L
2
m([0, tf ]) : u(t) ∈ U a.e. on [0, tf ]}

be the set of admissible control functions. Note that in the case of the convex
control set U the set U is also convex. In addition, we assume that for each
u(·) ∈ U the initial value problem







ẋ(t) = f(t, x(t), u(t)) a.e. on [0, 1],

x(0) = x0

(1.2)

has a unique absolutely continuous solution xu(·). For some constructive ex-
istence/uniqueness conditions see e.g., [5, 12].

Let us introduce the mappings J̃ , h̃, s̃ : L
2
m([0, tf ]) → R and the mapping

q̃ : L2
m([0, tf ]) → C([0, tf ]) defined by

J̃(u(·)) := Φ(xu(tf )), h̃(u(·)) := h(xu(tf )),

q̃(u(·))(t) := q(t, xu(t)) ∀t ∈ [0, tf ],

s̃(u(·)) :=

∫ tf

0

s(t, xu(t), u(t)) dt.

Evidently, the initial OCP (1.1) can be formulated as the following infinite-
dimensional nonlinear program

minimize J̃(u(·)) subject to u(·) ∈ U ,

h̃(u(·)) ≤ 0, q̃(u(·))(t) ≤ 0 ∀t ∈ [0, tf ], s̃(u(·)) ≤ 0.
(1.3)

In our paper we consider a class of the constrained OCP’s (1.1) such
that the corresponding problem (1.3) is a convex optimization problem in
the Hilbert space L

2
m([0, tf ]). The development of optimization theory has

proceeded almost contemporarily with the systematical investigation of con-
vex problems and their numerical treatment. A great amount of works is de-
voted to the theoretical and practical aspects of convex programming; see e.g.,
[7, 14] and the references therein. It is well known that the main classes of ex-
tremal problem include ill-posed problems [8]. Therefore, the use of standard
optimization and discretization methods often proves to be unsuccessful for
solving the ill-posed problems of the type (1.3). In the convex case we consider
the techniques of the proximal-regularization (see e.g., [3, 8, 9, 10, 13]) and
propose numerically stable computational schemes for the initial OCP(1.1).
Note that in parallel with Tikhonov’s regularization the proximal point al-
gorithm is the main method for treating ill-posed problems of mathematical
programming.
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2. Convex Optimal Control Problems

Let us introduce the basic concept (see [4]).

Definition 1. We call the control system (1.2) a convex control system if for
all t ∈ [0, tf ] and all k = 1, ..., n the functional Vk,t : U → R

Vk,t(u(·)) := xu
k(t)

is convex.

We are interested in studying the convex control systems in the context of
OCP’s. Therefore, we give our next definition.

Definition 2. If the infinite-dimensional problem (1.3) is equivalent to a con-
vex optimization problem in a real Hilbert space, then we call (1.1) a convex
OCP.

We continue by considering the semilinear control systems, namely, the sys-
tems (1.2) with the right-hand side f(t, x, u) = A(t)x + B(t, u).

Theorem 1. Assume that A(t) = (ai,j(t))
i=1,...,n
j=1,...,n, t ∈ [0, 1] are regular n × n

matrices and the functions ai,l are continuous. Let B : R × Rm → Rn be a
continuous function and ai,j(t) ≥ 0 for all t ∈ [0, 1], i, j = 1, ..., n. Suppose
that functionals u(·) → Bk(t, u(t)), u(·) ∈ U are convex for all indexes k =
1, ..., n and all t ∈ [0, tf ]. Then the corresponding semilinear control system
(1.2) is convex.

Clearly, a linear control system (1.2) with

f(t, x, u) = Ã(t)x + B̃(t)u,

where Ã(t) ∈ Rn×n, B̃(t) ∈ Rn×m are regular matrices, is also convex in the
sense of Definition 1. Note that some important classical nonlinear differential
equations, for example a controllable Bernoulli differential equation, can be
reduced to a linear equation.

Definition 3. A functional g : Γ ⊂ Rn → R is called monotonically nonde-
creasing if g(ξ) ≥ g(ζ) for all ξ, ζ ∈ Γ such that ξk ≥ ζk, k = 1, ..., n.

Clearly, the presented monotonicity concept can be expressed by introducing
the positive cone Rn

≥0 (the positive orthant). We now characterize a class of
convex nonlinear control systems.

Theorem 2. Assume that the function f in (1.2) is continuous and satisfies
the following Lipschitz condition (uniformly in u ∈ U)

||f(t, x1, u) − f(t, x2, u)|| ≤ L||x1 − x2||, ∀x1, x2 ∈ R
n, u ∈ U,

where t ∈ [0, tf ]. Let fk(t, ω), k = 1, ..., n be convex and monotonically nonde-
creasing functional with respect to the variable ω := (x, u) for every t ∈ [0, tf ].
Then the control system (1.2) is convex.



324 V. Azhmyakov, W. Schmidt

Our next result establishes the convexity of an optimal control processes
governed by a convex control system.

Theorem 3. Let the control system in (1.2) be convex and the functionals
Φ, h, s be convex and monotonically nondecreasing. Let the function q(t, ·)
be convex and monotonically nondecreasing for every t ∈ [0, tf ]. Then the
associated OCP (1.1) is convex.

The proofs of Theorem 1, Theorem 2 and Theorem 3 can be found in the work
of authors [4].

3. The Constructive Computational Approach

We now deal with convex OCP’s of the type (1.1). Let N ∈ N and

GN := {t0 = 0, t2, ..., tN = tf}

be a (possible nonuniform) grid. We examine a finite-dimensional variant of
problem (1.3)

minimize J̃(uN (·)) subject to uN (·) ∈ U ∩ L
2,N
1 (GN ),

h̃(uN (·)) ≤ 0, q̃(uN (·))(tk) ≤ 0 ∀tk ∈ G, s̃(uN (·)) ≤ 0,
(3.1)

where k = 1, ..., N . By L
2,N
1 (GN ) we denote here the Euclidean space of

piecewise constant control functions. Moreover, we consider a discretization
of system (1.2). We use the Euler method for this purpose. It must be admitted
that the first order Euler discretizations is particularly advantageous for rela-
tively easy OCP’s. Some alternative approximation procedures are described
in [16].

Theorem 4. Under the assumptions of Theorem 3 the discretized problem
(3.1) is a convex minimization problem.

The convex structure of problems (1.1) and (3.1) makes it possible to apply
a proximal-based method and a standard optimization algorithm (see e.g.,
[11, 14]. The objective functional for the regularized problem (3.1) can be
written in the form

J̃r(uN (·)) := J̃(uN (·)) +
χl

2
||uN(·) − ul

N(·)||2
L
2,N
1

(GN )
, l = 0, 1, ... ,

where u0
N(·) is an admissible piecewise constant control and {χl} is a given

sequence with 0 < χl ≤ C < ∞. Note that the regularized objective functional
J̃r is a strongly convex functional. Under some mild assumptions (see e.g., [8,
13]), the sequence {uN(·)} generated by the classic proximal point algorithm
is a minimizing sequence for (3.1). This sequence can be used for creating a
strongly-convergent minimizing sequence [3]. The gradient ∇J̃(ul(·)) of the
unconstrained OCP (1.3) can be found as follows (see [1, 12, 15])
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∇J̃(uN (·))(tk) = −Hu(tk, xN (tk), uN(tk), pN (tk+1)),

xN (tk+1) = Hp(tk, xN (tk), uN(tk), pN (tk+1), xN (t0) = x0,

pN (tk) = Hx(tk, xN (tk), uN (tk), pN (tk+1)), tk ∈ G, k = 1, ..., N − 1 ,

pN (1) = −Φx(xN (tN )),

(3.2)

where xN (·) is the solution of a discretized state equation, pN (·) are adjoint
variables and

H(tk, xN (tk), uN (tk), pN (tk+1)) = 〈pN (tk+1), f(tk, xN (tk), uN (tk))〉Rn

is the Hamiltonian of (3.1). Moreover,

∇J̃r(uN (·))(tk) = ∇J̃(uN (·))(tk) + χl(uN (tk) − ul
N (tk)), tk ∈ G.

The discretized problem (3.1) can be solved directly by applying (3.2) and a
gradient-based algorithm. We refer to [11, 14] for the general gradient-type
methods, to [6] for the ”gradient plus projection method” and to [12] for
feasible directions algorithms.

4. Some Extensions

The investigation of the convex control systems involves a question of general
interest. Let Ξ be a space of functions from R into R and Θ be a topological
space. Let T : Ξ × Θ → R be a functional. Assume that for every θ ∈ Θ the
given equation T (ξ, θ) = 0 has a unique solution ξθ(·) ∈ Ξ. It is a familiar
consideration in mathematics to seek to solve this equation for ξ, while viewing
θ as a parameter. In the connection with the above theory of the convex control
systems we can formulate the following problem: Conditions for the mapping
T may be chosen whereby the functional V : Θ → R, V(θ) := ξθ(t) is convex
for every t ∈ R.

Our results present a possible solution to the formulated general problem
for Θ = U and in the special case of the mapping T defined by the ordinary
differential equations.

From the view-point of numerical mathematics we solve an OCP (1.1)
approximately. Therefore, instead of the exact ”equivalence” in the sense of
Definition 2, one can consider a generalized concept of so-called approximately
convex OCP’s (see [1]). The application of this concept to β -relaxed OCP’s
(see [2]) is presented in [1].

In our paper we are concerned with the open-loop optimal control. The
question of possible generalizations of our convexity results for the closed-loop
solutions of OCP’s is still an open question.
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