
Mathematical Modelling and Analysis 2005. Pages 165–170

Proceedings of the 10th International Conference MMA2005&CMAM2, Trakai

c© 2005 Technika ISBN 9986-05-924-0

PARALLEL BRANCH AND BOUND

ALGORITHM TEMPLATE

M. BARAVYKAITĖ

Vilnius Gediminas Technical University

Saulėtekio al. 11, LT-10223 Vilnius, Lithuania

E-mail: mmb@fm.vtu.lt

Abstract. In this work the ideas of template programming are implemented for
sequential and parallel branch and bound (BB) algorithms in the parallel BB al-
gorithm template. Some results of calculation experiments of programs generated
using this template are given. The efficiency of implemented parallel algorithms is
discussed.

Key words: template programming, parallel branch and bound algorithms

1. Introduction

Parallel optimization algorithms are complicated to implement. For some algo-
rithms, parallel program can be obtained from the sequential one using some
parallelization tools. One type of such tools is parallel algorithm templates
[1]. Branch and bound (BB) algorithm is suitable for template programming.

2. Algorithm Templates

The general idea of a template programming is to implement a class of algo-
rithms that solve different problems but have the same control structure. For
this purpose the problem dependent part of the algorithm must be separated
from the general structure of the algorithm. The reusable implementation of
latter then can be used to solve different problems [7].

The ideas of template programming can be used for parallel template
programming. Then the template must specify the main features of parallel
programming: partitioning, communication, agglomeration and mapping [2].

166 M. Baravykaitė

3. Branch and Bound Algorithm

Branch and bound (BB) algorithm is suitable for template programming since
it has a strict control structure that can be used for different problems.

Here the following minimization problem is considered:

f∗ = min
x∈S

f(x),

where S is the set of feasible solutions, f(x) is objective function which de-
pends on variables x = (x1, x2, . . . , xn).

First, initial approximation of the optimal value must be calculated by
some heuristic algorithm, otherwise it is set to be infinity. Then the solution
space is subsequently partitioned into smaller subsets Sj . This algorithm step
is called branching. For every subspace Sj a lower bound LBj of the minimum
objective function value is calculated. This step of the BB algorithm is called
bounding. If the bound is larger than the currently known best solution, then
the subset Sj can be eliminated from further search, since this subset does
not contain the optimum solution. If the obtained bound is lower than the
best known value, then the branching step is performed over this subset. A
combination of both two steps over the subset is called a task. All unexplored
subsets are kept in a list.

During each iteration of the BB algorithm one task is processed. The
iteration has three main components: selection of the node to process, bound
calculation, branching.

The rule how to choose the next subset to examine can be defined in many
ways. This makes many variants of the branch and bound algorithm. The most
popular rules are: the best first search rule where the next task to explore is
the one with the lowest bound; the breadth first search rule where the oldest
task is explored next and the depth first search rule where the youngest task
is explored [6]. Node selection rules influence the efficiency of BB algorithm
and the number of nodes kept in a list. For particular problems some rules
can considerably improve the performance rate of the algorithm.

4. BB Algorithm Template

The parallel BB algorithm template proposes C++ classes for implementation
of sequential and parallel BB algorithms. MPI library is used for underlying
communications. General structure of the template is given in Figure 1.

BBAlgorithm implements various sequential and parallel BB algorithms.
The algorithm is performed using Task, Solution and SearchOrder instances.
BBAlgorithm is implemented by the template. SearchOrder defines the rules
how to select next task for subsequent partitioning. The most popular rules
are already implemented in the tool. Class Task should be implemented by
the user and it defines the problem to be solved and the branching and bound
calculation over the subspace. Class Solution implements the solution to be
found. For parallel algorithms, Task and Solution additionally have methods
that define how to prepare objects for exchange among processors.

Parallel Branch and Bound Algorithm Template 167

Task
 Solution

SearchOrder
BBAlgorithm

BBSeqential

BBParallel

BestFirstSearch

LastFirstSearch

BreadthFirstSearch

...

TaskSeqential

TaskParallel

SolutionSeqential

SolutionParallel

Figure 1. General structure or the BB template.

5. Implementation of Parallel BB Algorithms

Considering partition for parallel execution of BB algorithms, the search per-
formed over any subspace is independent from operations with other sub-
spaces. The domain decomposition algorithm (DD) can be used: subspaces of
initial search space can be distributed among processors. Additionally, latter
generated subspaces are mapped to the same processors and there is no need
to remap them. Then BB algorithm can be performed asynchronously over the
mapped subspace and at the end the best solution is chosen among them. If
the initial search space is divided into more subspaces so that processors get
several subspaces the algorithm is called domain decomposition with static
balancing (DD SB). The domain decomposition algorithm is improved if cur-
rently known best solution is exchanged among processors (DD SE). When
processor finds a better solution it broadcasts it to all other processors and
they update their currently known best solutions. The combination of DD SE

and DD SB algorithm is the fourth implemented algorithm (DD SE SB).
Parallel optimization algorithms have unpredictably varying unstructured

search space [8]. It should be noted that because of the domain decomposition
the order of search can differ in parallel and sequential BB algorithm even
using the same subset selection rule. Subsets eliminated in the sequential
algorithm can be explored in parallel one and it is possible that a total number
of the subspaces searched in the parallel algorithm can increase.

Let’s define the number of explored tasks as amount of work done by a
processor. Then the growth of number of subspaces searched using parallel
algorithm can be measured by the search overhead factor

SOF =
Wp

W0

,

where Wp is the sum of processed tasks in parallel algorithm and W0 is the
number of tasks processed by the sequential algorithm. This coefficient helps
to estimate efficiency of the parallel algorithm [3].

Domain decomposition often results in processor load disbalance that re-
duces the efficiency of parallel algorithms. Communications among processors

168 M. Baravykaitė

Figure 2. Functions for Lipschitz minimization

0

0,2

0,4

0,6

0,8

1

1,2

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

proc.

E
ff

ic
ie

n
cy

 DD

DD SE

DD SB

DD SB SE

Figure 3. Efficiency of different parallel BB algorithms using the Best
first search for the case of Function 1.

introduce additional costs of parallel algorithms. For implemented algorithms
communications are not significant compared with performed calculations.

6. Application Examples

The BB algorithm template was used to obtain parallel programs solving
Lipschitz function minimization [4] and symmetric traveling salesman prob-
lem over 20 cities [5]. Calculations were performed on VGTU cluster Vilkas
(www.vilkas.vtu.lt). The examples of optimized Lipschitz functions are given
in Figure 2.

For the first function, the efficiency of performance of different parallel
BB algorithms is given in Figure 3. Here the Best first search rule is used.
Algorithms with static balancing performs better because the growth of SOF,
given in Figure 4, is controlled better.

For other optimized function, all parallel algorithms perform not efficiently
(Figure 5). The reason for that is the increase of SOF (Figure 6) and great
processor load disbalance (Figure 7).

Experiments with traveling salesman problem shows that, parallel BB al-
gorithms performs not efficiently because of growth of SOF and processor load
disbalance.

Parallel Branch and Bound Algorithm Template 169

0,6

0,8

1

1,2

1,4

1,6

1,8

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

proc

S
O

F

DD

DD SE

DD SB

DD SB SE

Figure 4. SOF of different parallel BB algorithms using the Best first
search (function 1).

0

0,2

0,4

0,6

0,8

1

1,2

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

proc.

E
ff

ic
ie

n
cy

DD

DD SE

DD SB

DD SB SE

Figure 5. Efficiency of different parallel BB algorithms using the Best
first search (function 2).

0

2

4

6

8

10

12

14

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

proc

S
O

F

DD

DD SE

DD SB

DD SB SE

Figure 6. SOF of different parallel BB algorithms using the Best first
search (function 2).

170 M. Baravykaitė

0

10000

20000

30000

40000

50000

60000

70000

80000

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

proc

W
 p

ro
c
 max

min

avg

Figure 7. Load disbalance of DD SE SB algorithm (function 2).

7. Conclusions

BB algorithm is suitable for template programming and the BB algorithm
template is usable both for sequential and parallel BB algorithm testing. The
efficiency of implemented parallel algorithms based on domain decomposition
is reduced by growth of SOF and processor load disbalance. SOF can be
reduced using solution exchange method combined with static load balancing.
Static load balancing balances the processor load not enough for problems
solved using parallel branch and bound algorithms where tasks are generated
dynamically during the calculation. Dynamic load balancing can be used in
such situations. Although it will not guarantee the decrease the SOF, it may
assure that all processors will do the useful work.

References

[1] M. Baravykaitė and R. Šablinskas. The template programming of parallel algo-
rithms. Mathematical modelling and analysis, 7(1), 11 – 20, 2002.

[2] I. Foster. Designing and Building Parallel Programs. Addison-Wesley, 1995.
[3] A. Grama and V.Kumar A.Gupta, G.Karypis. Introduction to Parallel Comput-

ing. Addison Wesley, 2003.
[4] R. Horst and N.V. Thoai P.M. Pardalos. Introduction to Global Optimiza-

tion. Nonconvex optimization and its applications. Kluwer Academic Publishers,
2000.

[5] E.W. Lawler and D.B. Smoys J.K. Lenstra, A. Rinnooy Kan. The Traveling

Salesman Problem : A Guided Tour of Combinatorial Optimization. Wiley Series
in Discrete Mathematics and Optimization. John Wiley & Sons, 1985.

[6] M. Perregaard and J. Clausen. Parallel branch and bound methods for job shop
scheduling problem. Annals of OR, 83, 137 – 160, 1998.

[7] A. Singh and D. Szafron J. Schaeffer. Views on template-based parallel pro-
gramming. In: CASCON ’96: Proceedings of the 1996 conference of the Centre

for Advanced Studies on Collaborative research. IBM Press, 35, 1996.
[8] C. Xu and F.Lau. Load balancing in parallel computers. Theory and Practice.

Kluwer Academic Publishers, 1997.

