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Abstract. Stable laws have a wide sphere of application: probability theory,
physics, electronics, economics, sociology. They also play an important role in fi-
nancial mathematics, since the classical models of financial market based on the
hypothesis of normality often become inadequate. However, the practical implemen-
tation of stable models is a nontrivial task, because (with few exceptions) probability
density functions of α-stable distributions have no analytical representation. In our
previous works Zolotarev representation of the probability density function and di-
rect numerical integration method (with 96-point Gaussian quadrature) were used,
but it seems that the application of another probability density function integral
representation (with Gaussian quadrature and Laguerre quadrature combination) is
more efficient in computational aspect, fairly precise and easily implementable. The
suggested method is compared with other algorithms.
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1. Introduction

The stable distributions have a wide area of applications: probability theory,
communications theory, physics, astronomy, economics, sociology. The sym-
metric stable distributions were introduced by Cauchy in 1853, and one of
them is known by his name. The notion of stable probability law was intro-
duced by Lévy in 1924. The class originated from the desire to generalize the
Central Limit Theorem. It can be shown, that all limit distributions of sums
of i. i. d. random variables must be stable [5].

All but one of these distributions have infinite variance. The infinite vari-
ance of these random variables implies that observations of very large mag-
nitude can be expected and may, in fact, dominate sums of these random
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variables. It is not valid to treat these observations as outliers since exclud-
ing them takes away much of the significance of the original data; indeed,
it is precisely these observations that may be of greatest interest. This led
Mandelbrot [7, 8] to suggest the stable laws as possible models for the dis-
tribution of income and speculative prices. Take for example the distribution
of changes in stock market prices. Mandelbrot [8], Fama [4] and others have
shown that the probability of very large deviations is so great, that many sta-
tistical techniques which depend for their validity on the asymptotic theory
of finite variance distributions are inapplicable. The sum of a large number
of these variables is often dominated by one of the summands - a theoreti-
cal property of infinite variance distributions. In such a case, a mathematical
model assuming such a distribution for the observations is very useful: finan-
cial data are typically asymmetric, peaked and heavy-tailed [13], and so it
better (than usual normal models) fits the empirical data distribution.

2. α-Stable Distributions

The stable distribution can be most conveniently described by its character-
istic function

log ϕ(t) =

{

−σα|t|α{1− iβsign(t) tan πα
2 }+ iµt, α 6= 1,

−σ|t|{1 + iβsign(t) 2
π

log |t|} + iµt, α = 1,
(2.1)

where α ∈ (0, 2], β ∈ [−1, 1], σ > 0, µ ∈ R. Since (2.1) is characterized by four
parameters we will denote α-stable distributions by Sα(σ, β, µ). Here α is the
characteristic exponent (index), σ is the scale parameter, β is the skewness,
and µ is the location parameter. A stable probability density function (PDF)
is symmetrical if and only if β = 0. When σ = 1 and µ = 0 the distribution
is called standard stable. The general PDF of the stable distribution can be
standardized such that

p(x, α, β, µ, σ) =
1

σ
p(

x − µ

σ
, α, β, 0, 1), (2.2)

p(x, α, β) =
1

π

∫

∞

0

exp(−tα) cos(tx − βtα tan
πα

2
)dt, α 6= 1. (2.3)

The canonical representation (2.1) has one serious disadvantage. The func-
tions ϕ(t) have discontininuites at all points of the form a = 1, β 6= 0. There-
fore for numerical purposes it is advisable to use Nolan’s [11] parametrization

log ϕ(t)=

{

−σα|t|α(1+iβsign(t) tan πα
2 ((σ|t|)1−α − 1))+iµ0t, α 6= 1,

σ|t|(1 + iβsign(t) 2
π

log(σ|t|)) + iµ0t, α = 1.

(2.4)
The S0

α(σ, β, µ0) parametrization is a variant of Zolotariov’s (M) parametriza-
tion [15], with the characteristic function and hence the density and the dis-
tribution function jointly continuous in all four parameters. The location pa-
rameters of the two representations are related by
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µ0 =

{

µ + βσ tan πα
2 , α 6= 1,

µ + βσ 2
π

ln σ, α = 1.

The PDF of stable random variables exist and are continuous but, with a
few exceptions they are not known in closed form. The exceptions are

1. Gaussian distribution: S2(σ, 0, µ) = N(µ, 2σ2).
2. Cauchy distribution: S1(σ, 0, µ).
3. Lévy distributions: S0.5(σ,±1, µ).

3. Methods of Evaluation of the PDF of Stable

Distributions

With no analytical representation of probability density functions the practi-
cal implementation of stable models is a nontrivial task. However, there are
numerical methods that have been found useful in practice and are discussed
in this section.

3.1. Direct numerical integration methods

DuMouchel [3] developed a procedure for approximating the cumulative dis-
tribution function of Sα by using Bergström’s [1] series expansion and Zo-
lotarev’s [15] representation. Holt and Crow [6] combined four alternative
procedures (depending on the particular range of α and β) to approximate an
inversion integral for computing PDF values from the characteristic function.
Both DuMouchel and Holt-Crow algorithms are computationally intensive
and time consuming, making, for example, maximum likelihood estimation
(of parameters) a nontrivial task.

Nolan [12] used a variant of Zolotariov’s (M) parametrization (2.4) and
computed the density by numerically evaluating the integral

p(x, α, β) =
1

π

∫

∞

0

cos(h(x, t; α, β)) exp(−tα)dt,

where

h(x, t; α, β) =

{

xt + β tan πα
2 (t − tα), α 6= 1,

µ + βσ 2
π

ln σ, α = 1

is the obtained form of the inversion formula. He splits the region of integration
into intervals where the cosine term change sign. The endpoints of the intervals
are found analytically when β = 0; in other cases the endpoints are found
numerically, and the integral is approximated on each interval. Nolan reports,
that then α < 1 the exponent exp(−tα) decreases slowly and the region of
integration must get larger to obtain sufficient accuracy, computations are
slower. When α < 1, there are usually too many subintervals, round-off errors
increase quickly, and the desired accuracy (six digits) cannot be achieved.
Besides, when β 6= 0 and 0 < |α−1| < 0, 001, there are numerical problems in
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computing the term tan πα
2 (t − tα). Moreover, when x is large, the integrand

oscillates very fast.
One more direct numerical integration method should be mentioned. In

the case of α > 1 we replace the PDF integral with the approximation

p(x, α, β) ≈

∫ ∆

0

f(x, t; α, β)dt, (3.1)

where ∆ = ∆(α, ε) is the root of Γ ( 1
α
, ∆α) = απε equation (the error of (3.1)

is non greater than ε) and we evaluate (3.1) via some adaptive integration
method with an accuracy δ. This approach is rather effective in computational
aspect if we apply 96-points Gaussian quadratures and δ < 10−10.

3.2. Fast Fourier Transform method

Chenyao, Mittnik and Doganoglu [10] presented an algorithm for calculat-
ing the PDF of stable distribution by employing the Fast Fourier Transform
(FFT). In terms of the characteristic function the PDF can be written as

p(x, α, β) =
1

2π

∫

∞

−∞

e−ixtϕ(t)dt. (3.2)

The integral is calculated for N equally-spaced points with distance h, namely
xk = (k − 1 − N

2 )h, k = 1, . . . , N . Letting t = 2πω, (3.2) becomes

p((k − 1 −
N

2
)h) =

∫

∞

−∞

ϕ(2πω)e−i2πω(k−1− N
2 )hdω. (3.3)

The integral in (3.3) can be approximated by using the rectangle rule for N

points with spacing s, i.e.,

p((k − 1 −
N

2
)h) ≈ s

N
∑

n=1

ϕ(2πs(n − 1 −
N

2
))e−i2π(n−1− N

2 )(k−1−N
2 )hs. (3.4)

By setting in (3.4) s = 1
hN

, one obtains approximation

p((k−1−
N

2
)h) ≈ s(−1)k−1−N

2

N
∑

n=1

(−1)n−1ϕ(2πs(n−1−
N

2
))e

−i2π(n−1)(k−1)
N .

(3.5)
The summation in (3.5) is computed by applying FFT to the sequence

(−1)n−1ϕ(2πs(n − 1 −
N

2
)), n = 1, . . . , N.

The kth element of the resulting sequence is normalized by s(−1)k−1−N
2 , to

obtain the PDF value for each grid point.
By substituting the standard stable characteristic function (α 6= 1)
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ϕ(t) = exp(−|t|α + iβ|t|αsign(t) tan
πα

2
)

into (3.5), with t = 2πs(n−1−N
2 ), standardized PDF values can be calculated

and, via (2.2), transformed to any desired parameter combination.
So the procedure for obtaining PDF consists of two steps. First, specify

equally-spaced grid values and compute the PDF values for these grid points
(to make use of the efficient FFT the numbers of grid points, N , should be a
power of 2). In a second step, linear interpolation is applied to the data points
falling between grid values. Authors state that comparisons with two other
approaches, namely that of [6, 12], demonstrate that the proposed algorithm
generates accurate PDF values (deviations can be found only in the sixth
digit, in case α ≥ 1, 25), if N ≥ 213), and order-of-complexity calculations
show that in most practical situations, such as empirical estimation, the FFT-
based method is more efficient than direct numerical integration.

So, direct numerical integration methods [6, 12] call for the calculation of
numerous subintegrals, FFT-based methods [9, 10] call for the employment of
sophisticated subroutines.

3.3. The method of two quadratures

Let us take standard stable PDF, case α 6= 1, in Nolan’s parametrization
(Fig. 1):

p(x, α, β) =
1

π

∫

∞

0

exp(−tα) cos(xt + β tan
πα

2
(t − tα))dt.

Canonical parametrization Nolan’s parametrization

Figure 1. Stable densities with β = 0.5, α = 1.05, 1.12, 1.95.

The most ’natural’ way of evaluating the integral over the interval (0,∞)
seems to be 96-points Laguerre quadrature

p(x, α, β) ≈
1

π

96
∑

n=1

wn exp(tn − tαn) cos(xtn + β tan
πα

2
(tn − tαn)), (3.6)
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where the abscissas tn are given by the roots of the Laguerre polynomial
L96(t), and the weights wn = tn(97L97(tn))−2. If direct implementation of
the approximation (3.6) does not provide sufficient accuracy of PDF values
(because of fast oscillation of the Laguerre quadrature when x is large (see
Fig. 2)), then we can ’suppress’ the oscillation by decreasing the power of

Figure 2. Approximation with 96-points Laguerre quadrature, α = 1.25, β = 0.5.

exponent in the integrand by shifting (see Fig. 3)

p(x, α, β) =

∫ d

0

f(x, t; α, β)dt +

∫

∞

0

f(x, u + d; α, β)du, (3.7)

where

f(x, t, α, β) =
1

π
exp(−tα) cos(xt + β tan

πα

2
(t − tα)).

Figure 3. Approximation with two quadratures, α = 1.25, β = 0.5.
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Now the first integral we evaluate with 96-points Gaussian quadrature, and
the ’tail’ - with 96-points Laguerre quadrature. For large absolute x-values we
will use an asymptotic Bergström [1, 2, 14] expansion (here given in canonical
parametrization)

p(x, α, β) =
1

πx

N
∑

n=1

anx−αn + O(x−(N+1)α−1),

an =
(−1)n−1Γ (nα + 1)

n!

(

1 + β2 tan2 πα

2

)
n
2

sin n
(πα

2
+arctan

(

b tan
πα

2

))

,

which yields efficient approximations for tails of the density.
We compare the accuracy of this method vs the direct numerical inte-

gration method (benchmark). The scheme is analogical to the comparison
in [10]. We calculate standard PDF values for α = 1.25, 1.50, 1.75, β =
−1.0,−0.5, 0, 0.5, 1.0 with d = 8 and x = 0, 0, 1, . . . , 4.9. We use the mean
absolute deviation (D1) and the maximum absolute deviation (D2) of the
vectors of the PDF values, defined by

D1 =
1

N

N
∑

i=1

|vi − wi|, D2 = max
i=1,...,N

|vi − wi|,

where v and w are vectors of length N = 50 to measure the distance between
the values obtained by two methods. Our results are presented in Table 1.

Table 1. Difference measures.

α 1.25 1.50 1.75

β D1 · 10−9 D2 · 10−9 D1 · 10−9 D2 · 10−9 D1 · 10−9 D2 · 10−9

-1.0 2.273 2.292 0.570 0.573 0.076 0.076
-0.5 2.252 2.262 0.569 0.570 0.076 0.076
0.0 2.239 2.239 0.567 0.567 0.076 0.076
0.5 2.234 2.243 0.566 0.567 0.076 0.076
1.0 2.236 2.255 0.566 0.568 0.076 0.076

We can see, that the method of two quadratures is more accurate than
FFT-based methods with N = 213, 216. It gives (if α ≥ 1, 25) at least nine
accurate significant digits of the PDF values, while FFT-based methods show
only five digits [10].

Direct numerical integration methods allow us to achieve greater preci-
sion, but at high cost of speed. For example, with adaptive direct numerical
integration method (on AMD Athlon 2800+ 1.81 GHz processor) 750 density
calculations with ε = 10−8 can be done in approximately 0.3 sec., however
the accuracy of ε = 10−15 requires approximately 4.5 min. We compare the
computational speed of the suggested method vs direct numerical integra-
tion methods: Nolan’s method [12], adaptive integration method (3.1) and
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Zolotarev integral representation method [11]. Zolotarev integral if α 6= 1,
ζ = −β tan πα

2 , ξ = − 1
α

arctan ζ can be written as

p(x, α, β) =
α(x − ζ)

1
α−1

π|1 − α|

∫ π
2

−ξ

V (θ, α, β)e−(x−ζ)
α

α−1 V (θ,α,β)dϕ, x > ζ,

where

V (θ, α, β) = (cosαξ)
1

α−1

(

cos θ

sin α(ξ + θ)

)
α

α−1 cos(αξ + (α − 1)θ)

cos θ
,

and

p(x, α, β) =

{

Γ ( 1
α ) cos ξ

πα(1+ζ2)1/2α , x = ζ,

p(−x, α,−β), x < ζ.

Results of the comparison are presented in Table 2.

Table 2. Calculations of 750 PDF values from Table 1.

Method Time, sec.

Nolan’s, ε = 10−9 1.2
Adaptive, ε = 10−9 0.6
Zolotarev 0.6
Two quadratures 0.2

Thus, the method of two quadratures is faster than direct numerical inte-
gration methods and FFT-based methods in computational aspect and easily
implementable. These features make the approach particularly useful in appli-
cations requiring a large number of fast and accurate PDF evaluations, such
as maximum likelihood estimation of the parameters of financial series.
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