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Abstract. The problem of minimization of a smoothing functional under inequa-
lity constraints is considered in a hyperplane. The conditions of existence and the
characteristics of a solution of this problem are obtained. It is proved that this
solution is a spline. The method for its construction is suggested.
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1. Smoothing Histosplines

Let a mesh 4n : a = t0 < t1 < ... < tn = b be given for the interval [a, b],
and let F = {f1, . . . , fn} be a corresponding histogram, i.e. fi is the frequency
for the interval [ti−1, ti], where i = 1, . . . , n. The mesh sizes are denoted by
hi = ti − ti−1, i = 1, . . . , n.

In many practical applications it is of interest to have a function g that
satisfies the area matching histopolation conditions

ti
∫

ti−1

g(t) dt = fihi, i = 1, . . . , n. (1.1)

We will take into account that the information on the frequencies fi, i =
1, . . . , n, is obtained in practice as a result of measuring, experiment or
preliminary calculations and it may be inexact. Hence for given numbers
εi ≥ 0, i = 1, . . . , n, we consider more general histopolation conditions
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ti
∫

ti−1

g(t) dt − fihi
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∣
≤ εi, i = 1, . . . , n, (1.2)
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and pose the following problem.

Problem 1
b

∫

a

(g(q)(t))2 dt −→ min
g∈D1(ε)

,

D1(ε) = {g : g ∈ W
q
2 [a, b],

∣

∣

∣

ti
∫

ti−1

g(t)dt − fihi

∣

∣

∣
≤ εi, i = 1, . . . , n},

where W
q
2 [a, b] is the Sobolev space.

In the case of exact information (i.e. εi = 0 for all i) we have a histopo-
lation problem the solution of which is a spline s (called a histospline) from
the space S(4n) of integral splines of degree 2q and defect 1 over the mesh
4n (e.g. [5]):

S2q,1(4n) = {s ∈ W
q
2 [a, b] :

ti
∫

ti−1

g(t) dt = 0, i = 1, . . . , n,

=⇒
b
∫

a

g(q)(t)s(q)(t) dt = 0 for all g ∈ W
q
2 [a, b] }.

In the case of inexact information (i.e. εi > 0 for some i) it is a problem of
smoothing histopolation. If n ≤ q , then any polynomial of degree q−1, which
satisfies the condition of histopolation (1.2), gives the solution of Problem 1.
If n > q and no algebraic polynomial of degree q−1 satisfies the inequalities
(1.2), then Problem 1 has a unique solution (e.g. [5]). This solution is a spline
from the space S2q,1(4n), which minimizes the smoothing functional under
restrictions. This spline is called a smoothing histospline.

The main purpose of the present paper is to consider Problem 1 with one
additional restriction. We pose the following problem.

Problem 2
b

∫

a

(g(q)(t))2 dt −→ min
g∈D2(ε)

,

D2(ε) = {g : g ∈ W
q
2 [a, b],

∣

∣

∣

ti
∫

ti−1

g(t) dt − fihi

∣

∣

∣
≤ εi, i = 1, . . . , n,

b
∫

a

g(t) dt = 1},

which naturally appears under approximation of a given histogram F with
frequencies fi ,i = 1, . . . , n.

We investigate this problem in a more general case in a Hilbert space (see
Problem 3) and obtain the existence and the characteristics of its solution.
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We reduce Problem 3 to the problem of ”almost” linear programming with
some nonlinear conditions (see Problem 5) and suggest the method for finding
its solution by the modification of the simplex algorithm.

2. The Generalization of the Problem of Smoothing

Histopolation

Let X , Y be Hilbert spaces and assume that a linear operator T : X → Y

and functionals ki : X → IR, i = 1, . . . , n, are continuous. For given vectors
r = (r1, . . . , rn) and ε = (ε1, . . . , εn) with εi ≥ 0, i = 1, . . . , n, we consider
the conditional minimization problem.

Problem 3

‖ Tx ‖Y −→ min
|kix − ri| ≤ εi, i = 1, . . . , n,

n
∑

i=1

kix =
n
∑

i=1

ri.

In the case εi = 0, i = 1, . . . , n, a solution of this problem is called an
interpolating spline for a vector r and it belongs to the space

S(T, A) = {s ∈ X : < Ts, Tx >= 0 for all x ∈ KerA},

corresponding to the operators T and A = (k1, . . . , kn). In the case of inexact
information (εi > 0 for some i) Problem 3 without the last condition defines
splines in a convex set (in the special case smoothing splines) [5, 6]. Such
splines belong to the space S(T, A) also.

Let us suppose that ImA = IRn, ImT = Y and the sum KerT + KerA
is closed. Let us denote

Zr = {z ∈ IRn :

n
∑

i=1

zi =

n
∑

i=1

ri}, Xr = {x ∈ X : Ax ∈ Zr},

Pr,ε =
n

∏

i=1

[ri − εi; ri + εi], Cr,ε = {x ∈ Xr : Ax ∈ Pr,ε}.

We rewrite Problem 3 in the form

||Tx||Y −→ min
x∈Cr,ε

and prove the following results.

Theorem 1. A solution of Problem 3 exists. An element σ ∈ Cr,ε is a so-

lution of this problem if and only if there exists an element λ ∈ IRn such

that

T ∗T (σ) = A∗λ and < λ, ω − Aσ >≥ 0 for all ω ∈ Pr,ε ∩ Zr.
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Corollary 1. A solution of Problem 3 belongs to the space S(T, A) of splines.

Theorem 2. An element σ ∈ Cr,ε is a solution of Problem 3 if and only if

there exist elements λ ∈ IRn and γ ∈ IR such that

T ∗T (σ) = A∗λ,

λi = γ if |kiσ − ri| < εi,

λi ≥ γ if kiσ − ri = −εi,

λi ≤ γ if kiσ − ri = εi, for i = 1, . . . , n.

3. The Equivalent Problem of Quadratic Programming

Taking into account that the solution of Problem 3 is a spline, we can restrict
the class of functions X by the space S(T, A) and rewrite the smoothing
functional ||Tx||Y as a function of n new non-negative variables

zi = kis − ri + εi, i = 1, . . . , n. (3.1)

If we denote by si ∈ S(T, A) the spline which satisfies the conditions

kjsi = δij , j = 1, . . . , n, i = 1, . . . , n,

where δij is the Kronecker symbol, then s1, . . . , sn is a basis of the space
S(T, A). By introducing the matrix D = (λji)i,j=1,...,n, where (λij )j=1,...,n

are the coefficients of the basis spline si, and the vectors z = (zi)i=1,...,n,

and c = (ci)i=1,...,n, where ci =
n
∑

j=1

(rj − εj)(λji + λij), Problem 3 can be

rewritten in the matrix form

Problem 4

zDzT + czT −→ min
z≥θ, z≤2ε, (z−ε)eT =0,

where e and θ are the vectors with n unit components and n zero components
correspondingly.

Lemma 1. The matrix D is symmetric and positive semidefinite.

Thus Problem 3 is reduced to Problem 4 of quadratic programming with
symmetric and positive semidefinite matrix under linear restrictions.

4. The Equivalent Problem of ”Almost” Linear

Programming under Nonlinear Conditions

We use the Wolfe method (e.g. [4]) to reduce Problem 4 to the problem of
”almost” linear programming with some nonlinear conditions. The reasoning
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in this reduction is similar to that of [1, 2] and we consider only important
steps.

We start with the Lagrange function

F (z, λ) = zDzT + czT + λ1(z − 2ε)T + λ0(z − ε)eT ,

where λ = (λ0, λ1) is the vector of Lagrange multipliers,

λ0 ∈ IR, λ1 = (λi)i=1,...,n ∈ IRn.

Taking into account necessary and sufficient conditions for z to be a so-
lution of Problem 4 (e.g. [4]) by introducing slack non-negative variables
(z̄ = (z̄i)i=1,...,n and µ = (µi)i=1,...,n as µT = 2(DzT ) + cT + (λ1)T +
λ0eT and z̄ = 2ε − z, we can rewrite Problem 4 as a linear program-
ming minimization problem of ueT for an auxiliary non-negative vector
u = (ui)i=1,...,n under some nonlinear restrictions.

Problem 5

ueT −→ min

2DzT + cT + (λ1)T + λ0eT − µT + EuT = 0,

z + z̄ = 2ε, (z − ε)eT = 0,

µzT = 0, λ1z̄T = 0,

z ≥ θ, z̄ ≥ θ, λ1 ≥ θ, µ ≥ θ, u ≥ θ,

where E is the diagonal matrix with components 0, 1 and -1. The existence
of a non-negative solution of Problem 3 implies that zero is the solution of
Problem 5.

Theorem 3. Let Problem 3 have the unique solution. Then it is equivalent to

Problem 5 in the following sense

• Problem 5 has the unique solution too.

• The solution of Problem 3 determines the solution of Problem 5 and the

solution of Problem 5 determines the solution of Problem 3 by (3.1).

5. The Modification of the Simplex Method

Problem 5 differs from problems of linear programming in two simple nonlinear
conditions

µz> = 0, λ(z̄)> = 0.

For the solution of the problem a modification of the simplex method based on
the Wolfe and Daugavet works ([3, 4]) is suggested. We give a short description
of this algorithm.
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Initial plan

We choose z = z̄ = ε, λ = θ, µ = θ. We take an initial value of

ui = |2(DzT )i + ci|, i = 1, . . . , n,

and choose the sign at ui i = 1, . . . , n (the diagonal elements of matrix E) in
such a way that they satisfy the equations

2DzT + cT + EuT = 0.

Iterations

Every step of the method is a transformation of the simplex table, taking
into account the lexicographic ordering (it allows us to avoid iterative loops)
and the additional conditions µz> = 0, λ

1
z̄T = 0. We can show that the

additional nonlinear condition does not prevent us from doing it. We prove
that if the next simplex iteration can not be done without violation of these
nonlinear conditions then the last basic solution gives ueT =0, i.e. the solution
of Problem 5.

Solution

This method gives us the values of the components of the vector (r−ε+ z ).
The corresponding interpolating spline is the solution of Problem 3. It can be
constructed by some known methods of construction of interpolating splines.
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