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Abstract. The system of two nonlinear first order differential equations with sepa-
rated boundary conditions and nonlocal integral condition is considered. The system
simulates a shape of free surface of micro volume liquid metal drop with non fixed
radius on the horizontal plane. The boundary problem is brought to the initial one.
The iterative process accounting the curve of the crest of the drop, depending on
some geometrical and mechanical parameters, and the radius of adhesion of the drop
on the plane, is proposed.
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1. Introduction

The problem investigated in this paper provides the numerical modeling of
the free surface of the liquid metal drop on the horizontal plane. The wide
range of simulations of liquid drops’ shape behavior was proposed in [6].

In applications several parametrical and nonparametrical models were used
for simulation of micro volume liquid metal drop shaped contacts, for example,
in the telecommunication installments, providing the calculation of the curve
of the drop crest. The investigation of liquid drop equations is still urgent
from mathematical point of view as well widely used in technical, physical
and chemical applications [4, 5, 7, 9]. As a specific feature of the model of
the drop on the plane investigated earlier [2, 8], the specific treatment of the
plane was used providing radius a of the adhesion of the base of drop to the
plane was given (fixed radius).
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In the paper [3] the nonlocal problem of the system of three ordinary
differential equations of the first order modelling the drop was investigated:































du

ds
= sinϕ,

dr

ds
= cosϕ,

dϕ

ds
= Ku −

1

r
sin ϕ − λ,

(1.1)

where s ∈ [0, 1]. Boundary conditions

u(1) = 0, r(0) = 0, ϕ(0) = 0, (1.2)

and integral nonlocal condition of volume of the drop

2π

1
∫

0

ur cosϕ ds = V0 (1.3)

were added. Similar axisymmetric model of the drop was used in [7]. The
similar system for nonconstraint problem used in [5].

Here, respectively, u is height and r is radius of every point on the curve
of the crest of drop, ϕ is an angle of the tangent and axis Ox at that point.
λ is unknown constant (Lagrange multiplier), V0 – volume of the drop, K –
parameter including specific tension of the surface of liquid, material density
and gravity.

2. Problem Formulation

In this paper the system of two nonlinear equations modeling the shape of the
crest of the drop is investigated. This system is obtained remaking the system
of three differential equations (1.1) – (1.3).

The main purpose of this paper is to find an effective method for the
solution of the problem with non fixed radius of the drop. In this case the
liquid on the plane spreads according to the physical laws of minimum energy
and optimal surface, depending on the wetting angle ϕ1 which is a constant
individual for the respective materials of liquid in the drop and the plane.
Thus ϕ1 becomes a parameter of the problem.

The differential model leads to the nonlocal problem for the system of two
nonlinear differential equations with separated boundary conditions.

Providing
du

ds
=

du

dϕ

dϕ

ds
,

dr

ds
=

dr

dϕ

dϕ

ds

and putting these expressions to the equations (1.1) and integral condition
(1.3), we get the system of two parametrical equations
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du

dϕ
=

sinϕ

Ku− 1

r
sin ϕ − λ

,

dr

dϕ
=

cosϕ

Ku− 1

r
sin ϕ − λ

(2.1)

with the separated boundary conditions

u(ϕ1) = 0, r(0) = 0, (2.2)

taken in the different end-points of the interval ϕ ∈ [0, ϕ1], and nonlocal
condition

2π

a
∫

0

ur dr = V0 . (2.3)

The solution of the problem then is given by (u(ϕ), r(ϕ), λ, a), where a =
r(ϕ1).

To solve the problem (2.1) – (2.3) we bring this boundary value problem
to the equivalent initial value problem (or the Cauchy problem) (2.1), (2.3)
with the initial conditions

u(ϕ1) = 0, r(ϕ1) = a, (2.4)

as it is used, for example, in [1]. Radius a of the base of drop is non fixed, then
the Cauchy problem (2.1), (2.3), (2.4) depends on the unknown parameter
a = r(ϕ1), i.e. the solution is u = u(ϕ, a), r = r(ϕ, a). The parameter a

should satisfy the condition
r(0, a) = 0.

In the paper [3] it was shown that the algebraic connection for λ to the
other parameters of the problem can be obtained for the problem with fixed
radius:

λ

2
a2 + a cosϕ1 −

K

V0

= 0. (2.5)

Getting λ from (2.5) we put it to (2.1). From (2.5) it follows that

a = −
1

λ
cosϕ1 ±

√

1

λ2
cos2 ϕ1 +

K

λπ
V0 (2.6)

for sharp as well as obtuse wetting angle ϕ1 (cosϕ1 > 0). The uniqueness of
the positive radius a was also proven in [3].

Condition (2.6) binds two parameters of the problem a and ϕ1, one of
which is unknown. In [3] a was fixed parameter while ϕ1 was obtained as a
result of calculation.

For the problem (2.1), (2.3), (2.4) parameter ϕ1 is given while a is un-
known. Selfdependense of parameters a and ϕ1 allows us to use condition
(2.6) for the problem (2.1), (2.3), (2.4).
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Figure 1. Shape of the drop according wetting angle ϕ1.

3. Numerical Experiment

The two stage method was proposed for the numerical solution of the problem.
For the values of radius a the interval [a1, a2] was taken, providing con-

dition r(0, a1) < 0 but r(0, a2) > 0. Iteration process was based on shooting
and interval bisection methods. The aim was to get value of radius a, which
approximetely satisfies condition r(0, a) = 0.

For each division value when using interval bisection method, the Runge
– Kutta method of 4th order was used to solve the problem (2.1), (2.3), (2.4).
Such approach was used, for example, in [7]. As stressed there, the numerical
solution may be then regarded as beeing very accurate, except for the region
close to the axis (r = 0).

We shall give a note concerning some specific features of the algorithm.
For right-hand sides of equations of the system (2.1)

f1 =
sinϕ

Ku− 1

r
sin ϕ − λ

, f2 =
cosϕ

Ku − 1

r
sinϕ − λ

the derivatives
∣

∣

∣

∂fi

∂u

∣

∣

∣
,
∣

∣

∣

∂fi

∂r

∣

∣

∣
, i = 1, 2

are bounded in each of the intervals [ε, ϕ1], there ε is desirable small number.
The derivatives as well f1 and f2 contain the ratio
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sin ϕ

r
,

sin ϕ

r2
, (3.1)

with the property of possible unboundness when ϕ → 0 (r → 0).
Therefore it was important to calculate with hight accuracy the values of

ratio in (3.1) when ϕ → 0. In all cases of numerical experiment, the values of
ratio in (3.1) turned to zero, when ϕ → 0 (r(0, a) → 0). Any way, to avoid
the possible loss of accuracy we applied the Runge-Kutta procedure from the
right side of the interval (0, ϕ1]. Similar approch when integration process was
starting from the maximum value of radius r towards the top of the drop is
used in [7].

The similar effect we get when investigating the expression of denomi-

nator Ku −
sinϕ

r
− λ of f1, f2, which may turn to zero. Calculations show

that the ratio
sin ϕ

r
→ 0 when r → 0. In addition in [3] it was shown that

because Ku −
sinϕ

r
− λ ≤ 0 along the boundary curve, in surroundings of

the solution u, r, λ, the denominator never turns to zero. The effectiveness of
the algorithm is illustrated by the series of numerical results. The shape of
the sessile drop on the plane with non fixed radius of adhesion is obtained,
respectively according to the wetting angle ϕ1 (see Fig. 1), the volume of the
drop V0, and to overweight K. In the Fig.1 lines 1,2,3 indicate the curves of
drop crest for the wetting angle equal 1[rad], 2[rad] and 2.5[rad] respectively,
V0 = 0.0002, K = 28.8.
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