
Mathematical Modelling and Analysis 2005. Pages 171–177

Proceedings of the 10th International Conference MMA2005&CMAM2, Trakai

c© 2005 Technika ISBN 9986-05-924-0

APPLICATION OF PARALLEL ARRAYS

FOR SEMIAUTOMATIC

PARALLELIZATION OF FLOW IN POROUS

MEDIA PROBLEM SOLVER

A. JAKUŠEV, V. STARIKOVIČIUS and R. ČIEGIS

Vilnius Gediminas Technical University

Saulėtekio al. 11, LT-10223 Vilnius, Lithuania

E-mail: alexj@fm.vtu.lt; vs@sc.vtu.lt; rc@fm.vtu.lt

Abstract. Parallel Arrays library ParSol is the C/C++ library for semiautomatic
parallelization of data parallel algorithms. This library offers sequential and parallel
arrays to be used in C/C++ algorithm implementations. Any program that uses
sequential ParSol arrays and is written in accordance with some simple rules, may
be parallelized in similar way as Fortran 90 program may be parallelized by using
HPF. ParSol uses MPI for interprocess communication.

In this article, issues of application of parallel arrays for parallelization of
MfsolverC++ is discussed. This solver simulates two-phase immiscible flow in porous
media using mathematical model with global pressure formulation.

Key words: porous media, numerical algorithms, parallel agorithms, solvers

1. Introduction to Porous Media Problems

Porous medium consists of solid phase and void spaces. The void spaces may
be filled with various gaseous and fluid phases. In order to derive mathematical
models for fluid flow, porous medium must fulfill the following requirements:

1. The dimensions of the void space must be small enough so that the fluid
flow is controlled by adhesive and cohesive forces (multiphase systems);

2. The dimensions of the void space must be large compared to the mean
free path length of the fluid molecules;

3. The void spaces of the porous media are interconnected.

The flow in porous media is described by the following equations [5]:

∂ (ΦραSα)

∂t
+ ∇ · {ραuα} = ραqα , (1.1)



172 A. Jakušev, V. Starikovičius, R. Čiegis

uα = −
krα

µα

K (∇pα − ραg) , (1.2)

pcβα (x, t) = pβ (x, t) − pα (x, t) , β 6= α , (1.3)

∑

α

Sα = 1 , (1.4)

where equation (1.1) is the mass conservation law for every phase α, equa-
tion (1.2) is the Darcy law for every phase α, equation (1.3) describes the
capillary pressure for all phase pairs (α, β).

To solve this system of equations, global pressure formulation approach is
used, since equations in this model are less coupled and entering quantities
are smoother [6].

2. Solver for Computation of Flows in Porous Media

We use our software tool MfsolverC++ for computation of multiphase flows
in porous media [6].

We mention some similar projects. A general PDE software tool Diffpack

is an object oriented development framework for the solution PDE [8]. The
toolbox UG is a framework for unstructured grid computations. A number
of applications of this tool for computations of complex fluid flows in porous
media are described in [1, 5].

Initially MfsolverC++ was created as a sequential application [6]. Its key
features are the following:

• Written in C++, enabling portability of the code;
• Written using OOP, thus giving clear and maintainable code;
• Its architecture is similar to DiffPack package [8].

Buckley-Leverett McWhorter

CommonRel

Manager

PressureM

Pressure

. . .

SaturationM

Saturation

LinEqSolver

TimePrm

GridFD

Figure 1. MfsolverC++ class diagram.



Application of Parallel Arrays for Semiautomatic Parallelization 173

The diagram of MfsolverC++ classes is presented in Figure 1. It consists
of the following main classes:

Pressure equation solvers. Here Pressure class and its descendants are imple-
mented. They contain various pressure equation solution methods.

Saturation equation solvers. Here Saturation class and its descendants are im-
plemented. They contain various saturation equation solution methods.

System properties. Common set of relations (constitutive relationships, model
definitions, etc.) are collected in class CommonRel.

Manager. Manager class acts as the solver class for the whole PDEs system.
This class contains two way pointers to the subclasses for solving the
pressure and saturation equations.

3. Parallel Arrays Library ParSol

The initial goal of creating ParSol parallel array library was to provide a tool
for parallelization of MfsolverC++. However, ParSol is designed with intention
to be used in much wider range of applications.

ParSol has the following key features:

1. It is written in C++, using template mechanism and OOP.
2. It uses MPI [4] for underlying communications.
3. It operates similar to HPF [7].

C++ becomes most popular programming language for developing many
applications in computational science and modelling, thus we need similar
tools as were developed for Fortran codes.
Parallelization of data parallel algorithms is done in few simple steps. The
difference from HPF is that the user must specify explicitly the stencil
of the grid used in the algorithm. Such information is required to im-
plement additional data communication part of parallel algorithm. The
other requirement is that all computations should not depend on the or-
der in which array points are processed (for example the Jacobi iterative
method satisfies this requirement, but the Seidel iterative method can not
be parallelized with ParSol.)

The ParSol arrays have many useful features, e.g. operations with arrays,
possibility to compute various norms of vectors, scalar products and etc. Thus
it is recommended to use array operations provided by ParSol wherever it is
possible. It frees programmer from implementing simple tasks, allowing to
concentrate on problem solving, and makes the code cleaner and in many
case more efficient.

Features 1 and 2, if exploited properly, allow to use ParSol on wide range
of computer platforms and compilers. Currently, ParSol was tested in the
following cases:

• MS-Windows OS, MS Visual C++ 6.0, MPICH MPI implementation;



174 A. Jakušev, V. Starikovičius, R. Čiegis

• Linux OS, gcc 3.3.2 and higher versions, LAM MPI implementation (see,
http://vilkas.vtu.lt);

• IBM SP4 supercomputer (AIX), Visual Age C++ compiler, IBM MPI
implementation (see, http://www.cineca.it).

 

PS_CmArr ay< ElemType, DimCount > 

PS_CmArr ay_2D< ElemType > 

PS_CmArr ay_1D< ElemType > 

PS_CmArr ay_3D< ElemType > 

PS_ParArr ay< ElemType, 
DimCount > 

PS_CustomTopology PS_1DTopology 

PS_2DTopology 

PS_3DTopology 

… 

… 

PS_ParArr ay_2D<ElemType> PS_ParArr ay_1D<ElemType> … PS_ParArr ay_3D<ElemType> 

Figure 2. ParSol library class diagram.

ParSol class diagram is shown on Figure 2. The main elements of the
library are the following:

Sequential array classes. These are the classes to be used instead of native
C/C++ arrays. No MPI or other libraries, except ParSol itself, is neces-
sary to use them. Comparing to native C/C++ arrays, ParSol sequential
arrays have a number of advantages for implementation of mathematical
algorithms, such as virtual indexes, built-in array operations, automated
management of dynamically allocated memory.
The main functionality resides in template class PS CmArray. However,
general functionality requires interface complexity. So children are derived
for special cases (e.g., 1D, 2D, 3D arrays), that provide intuitive and user-
friendly interface. It is recommended for end-user to use those classes
whenever possible.

Parallelization and parallel array classes. If parallel arrays are used in place
of sequential ones, it is natural to make them the descendants of appropri-
ate sequential arrays, adding parallelization code to the sequential array
functionality. We note that parallelization is similar for different kinds of
arrays. So parallelization code is localized in class PS ParArray, and is
used in parallel array classes by multiple inheritance.

Topology classes. The purpose of these classes is to ensure that all processes
are in proper order for parallel array functionality. In HPF, this function-
ality is performed by special directives. All the general code resides in
PS CustomTopology class. As with sequential array classes, there are also



Application of Parallel Arrays for Semiautomatic Parallelization 175

descendants for some special cases (PS {1,2,3}DTopology), which provide
end user with more friendly interface.

Stencil classes. A stencil is determined depending on what computational
scheme is used. This information should be provided by the user of Par-

Sol tool. Based on stencil, a different amount of information needs to
be exchanged among neighbours processors. Hence, stencil information is
required for parallel arrays to operate properly.

To use ParSol, a programmer must develop his/her sequential applica-
tion in C++, only ParSol arrays must be used to store computational data.
Parallelization of such sequential program takes the following steps:

1. Replace includes of sequential headers with parallel ones (e.g. the header
file PS CommonArray.h should be replaced by PS ParallelArray.h).

2. Replace sequential classes with their parallel versions in variable declara-
tion part of the code.

3. Add MPI initialization code, i.e. one line at the beginning of the program.
4. Add topology initialization code (in its simplest case, it is sufficient to

add one line at the beginning of the program).
5. Specify when processors – array neighbours should exchange data.
6. MPI library should be linked during building process.

4. Results of Computational Experiments

The parallelization of MfsolverC+ is still in developing stage. Till now we
have tested ParSol on a set of benchmarks designed to measure performance
of several components and parts crucial for efficient performance of parallel
version of MfsolverC+.

A nonlinear 2D diffusion problem was approximated by the explicit Euler
scheme. A detailed description of the problem is given in [3]. In Table 1, the
results of testing ParSol on PC cluster ”Vilkas” of Vilnius Gediminas technical
university are presented. PC clusters are known for their high communication
latency thus the efficiency of parallel algorithms can be reduced for small
computational problems when communication costs are relatively very high.

The parallelization of the same algorithm is much more effective on SP4
computer where communication costs are smaller. The results are presented
in Table 2.

In the second test we solved by the Conjugate Gradient method a system
of linear equations which was obtained after the discretization of the three
dimensional Poisson problem by the finite–volume method. Table 3 presents
experimental speedup Sp(n) and efficiency Ep(n) values for solving problems
of different size using the diagonal preconditioner. Computations were per-
formed on PC cluster ”Vilkas”.

Scalability analysis of parallel CG method and more computational results
with different preconditioners are presented in [2].



176 A. Jakušev, V. Starikovičius, R. Čiegis

Table 1. The speedup and efficiency for explicit Euler algorithm on PC cluster.

p Sp(160) Ep(160) Sp(240) Ep(240) Sp(320) Ep(320)

2 1.56 0.780 1.76 0.880 1.87 0.934
4 2.36 0.590 3.00 0.750 3.45 0.862
6 2.78 0.463 3.93 0.655 4.77 0.795
8 2.95 0.369 4.69 0.585 5.88 0.735
9 3.16 0.351 5.04 0.560 6.28 0.698

11 3.33 0.303 5.50 0.500 7.09 0.644
12 3.35 0.279 5.64 0.470 7.47 0.623
15 3.39 0.226 6.38 0.425 8.56 0.571

Table 2. The speedup and efficiency for the explicit Euler algorithm on SP4.

p Sp(80) Ep(80) Sp(160) Ep(160) Sp(320) Ep(320)

2 1.975 0.988 1.984 0.992 2.004 1.002
3 2.794 0.931 2.950 0.985 2.970 0.990
4 3.741 0.935 3.928 0.982 3.986 0.996
6 5.168 0.861 5.463 0.910 5.916 0.986
8 6.766 0.846 7.293 0.911 7.831 0.979
9 6.784 0.754 7.604 0.845 8.467 0.941

12 8.701 0.725 10.19 0.849 11.216 0.934
16 10.84 0.677 12.75 0.797 15.041 0.940
24 14.18 0.591 18.24 0.760 21.961 0.915

5. Conclusions

Application of ParSol tool for parallelization of MfsolverC++ still requires
some restructuring of solver’s code. However we have shown that essential

Table 3. The speedup and efficiency of the CG algorithm on PC cluster.

p Iterations Size Tp Sp Ep

1 188 100 24.10
2 188 100 13.22 1.82 0.911
4 188 100 6.65 3.63 0.906
8 188 100 4.03 5.97 0.747

1 350 200 366.54
2 350 200 185.51 1.98 0.988
4 350 200 94.99 3.86 0.965
8 350 200 51.58 7.11 0.888

4 453 300 407.57
8 453 300 215.60



Application of Parallel Arrays for Semiautomatic Parallelization 177

parts of the solver, i.e. solvers for saturation and pressure equations (which are
convection – diffusion and elliptic equations) can be successfully parallelized
by using ParSol tool.

References

[1] P. Bastian, K. Birken, S. Lang, K. Johannsen, N. Neuss, H. Rentz-Reichert and
C. Wieners. UG: A flexible software toolbox for solving PDE. Computing and

Visualization in Science, 1, 27 – 40, 1997.
[2] R. Ciegis. Analysis of parallel preconditioned conjugate gradient algorithms.

Informatica, 15(2), 155 – 172, 2005.
[3] R. Ciegis, A. Jakušev, A. Krylovas and O. Suboč. Parallel algorithms for solu-

tion of nonlinear diffusion problems in image smoothing. Math. Modelling and

Analysis, 10(2), 155 – 172, 2005.
[4] W. Gropp, E. Lusk and A. Skjellum. Using MPI: portable parallel programming

with the message-passing interface. The MIT Press, Cambridge, Massachusetts,
London, 1995.

[5] R. Helmig. Multiphase Flow and Transport Processes in the Subsurface – A

Contribution to the Modelling of Hydrosystems. Springer – Verlag, 1997.
[6] A. Jakušev and V. Starikovičius. Multiphase flow problem solver and its ap-

plication for multidimensional problems. Lithuanian Mathematical Journal, 44,
634–638, 2004. (in Lithuanian)

[7] C. Koelbel, D. Loveman, R. Schreiber, G. Steele and M. Zosel. The High Per-

formance Fortran handbook. MIT Press, USA, 1994.
[8] H.P. Langtangen. Computational Partial Differential Equations. Numerical

Methods and Diffpack Programming. Springer, Berlin, 2002.




