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Abstract. This paper introduces a simple gradient method for solving of linear
systems resulting from approximation of elliptic PDEs. The method has the same
rate of convergence as conjugate gradient method but it is as simple and reliable as
the minimal residual method.
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1. Introduction

Solving multidimensional differential equations of the elliptic type is very im-
portant problem in the theory of numerical methods. But finite-difference
approximation of such equations leads to linear algebraic system of large di-
mension M ∼ 104 − 106. The resulting matrices of these systems are very
sparse: each row contains only five or seven nonzero elements. Such systems
are usually solved by iterative methods. The most simple and reliable of them
are the steepest descent method and minimal residual method [3]. But con-
vergence of these methods is too slow. If the matrix spectrum has boundary
values λmin, λmax then number of iterations K ∼ µ = λmax/λmax. In this
paper the modification for the minimal residual method is suggested. The
modified method is as simple and reliable as the original one. But its conver-
gence speed is much better K ∼ √

µ, that corresponds to the speed of the
conjugate gradient method.

2. The Gradient Descent Method

Both the steepest descent method and the minimum residual method have an
interesting feature (see [2]): the residual diminishes very fast during the first
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several iterations, however, the convergence rate reduces to the theoretical
prediction at the later steps. This is illustrated in Fig. 1, where the horizontal
axis shows the index k of each iteration step, while the vertical axis shows (on
the logarithmic scale) the Euclidean norm of the residual.

Figure 1. Euclidean norm of the residual dependence on the iteration number k.

In practical computations, it is desirable to keep the high rate of conver-
gence that characterizes the first steps through the entire iterative process.

3. Relaxation Method

Let us consider the linear system

Ax = b (3.1)

We implement one step of the iterative process in anti-gradient direction,
according to the formula:

x(k+1) = x(k) + cτkr(k) (3.2)

where k is the iteration number, τ = (r, Ar)/(Ar, Ar) is the step in the stan-
dard minimal residual method, r = b − Ax is the residual of the system, c is
a multiplicative constant, called the relaxation factor.

The main aim of this paper is to find optimal value for the constant c when
the convergence speed of the gradient method is maximal. It is well known
that the gradient method with c = 2 diverges (see [2]). It is also clear that
the number of steps greatly increases as c → 0 since the step size tends to
zero. The typical dependence of iterations number K on c is shown in Fig. 2.

One can see that this dependence has a deep minimum near c ≈ 0.9. The
series of numerical investigation were carried out and it was shown that by



Speeding up the Convergence of Simple Gradient Method 351

Figure 2. Typical dependence of iterations number K on coefficient c.

setting c = 0.9 in (3.2) one can increase convergence speed up to K ∼ √
µ. The

typical test matrices we have used in numerical experiments are the following:
matrices resulting from the approximation of one- and two-dimensional elliptic
PDEs on the uniform grid, matrix with eigenvalues uniformly distributed
between the smallest eigenvalue λmin = α and the largest eigenvalue λmax = β
and some others.

4. Numerical Experiments

The convergence rate of the new method for one test problem is illustrated in
Fig. 3.

Figure 3. The convergence rate of the method with different parameter values.

Here, the error is represented as a function of the step number for the
original minimal residual method (c = 1) and for the method (3.2) with the
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recommended value c = 0.9. It is seen that both curves start in a similar way;
this is the initial stage of anomalous convergence. The curve corresponding to
c = 0.9 preserves this fast convergence, while, for the curve with c = 1, the
convergence becomes slow.

Figure 4. Dependence of the iteration number K on N , the number of grid points
per space direction, in a double-logarithmic scale.

Fig. 4 illustrates the dependence of the number of iterations K on the
number of grid points per space direction N in a double-logarithmic scale. In
all tests, method (3.2) was used with c = 0.9. Curves 1, 2, and 3 correspond to
the test matrices, resulting from the approximation of the one-, two- and three-
dimensional elliptic PDEs on the uniform grid, respectively. Curve 4 is the
theoretical curve for the conjugate gradient method, and curve 5 corresponds
to the original minimal residual method. It is evident from Fig. 4 that for all
test problems the number of steps of the new iterative method is practically
a linear function of N and all curves pass near the theoretical line for the
conjugate gradient method. For comparison purposes, we show how much
slower the minimal residual method is.

5. Descent Trajectories

In the two-dimensional case, trajectories of gradient descent can be visualized.
This is done in Fig. 5 for the system with the matrix A and the right-hand
side vector b given by:

A =

(

1 0
0 100

)

, b =

(

1
1

)

,



Speeding up the Convergence of Simple Gradient Method 353

hence, the exact solution is given by xe =

(

1
0.01

)

. Thus, Fig. 5 is the graph-

ical representation of the process of solving system (3.1) by method (3.2) in
the case N = 2.

Figure 5. A solution of the system (3.1) obtained by method (3.2) in a two-
dimensional case.

The steepest descent curve is replaced in Fig. 5 by the trajectory with
c = 0.01.The classical steepest descent curve corresponds to the trajectory
with c = 1. For the descent with c = 0.9, most of the steps are about the same
as those for c = 1; however, once in a while, there occur jumps that bring us
much closer to the solution. Observe that the most beneficial jump happens at
the moment when the current approximation is close to the steepest descent
curve. In the pure steepest descent method, no such jumps occur.

6. Results

Method (3.2) with c = 0.9 was successfully applied to solve 2D elliptic PDE
[1], which describes a stationary problem for conductivity or electric fields in
anisotropic medium:











∂2u

∂x2
+ σ

∂2u

∂x∂y
+

∂2u

∂y2
= 0, 0 ≤ x, y ≤ 1,

u (0, y) = u (1, y) = u (x, 0) = u (x, 1) = 0.

(6.1)

Experiments have shown that K ∼ √
µ for any important in practice

anisotropy parameter values |σ| ≤ 2. Therefore the proposed simple iterative
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method is reliable for anisotropic problems and is recommended for practical
usage.

7. Conclusions

We have proposed a simple one-step method of gradient descent that have
the same rate of convergence as the conjugate gradient method. The high
efficiency of the proposed methods is confirmed by numerous computational
experiments. Choosing the values of the parameters does not require knowl-
edge of the spectrum of the matrix. For matrices with elliptic spectra (and
some other types of spectrum), we experimentally investigated the methods
of under-relaxation and found the values of the relaxation factor that greatly
improve the performance of these methods.

This work is supported by RFBR (projects 05-01-00152, 05-01-00144) and
presidential supporting program for scientific schools (project 1918.2003.1)
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