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Abstract. The distribution of electromagnetic fields, forces and source term of
temperature induced by an alternating axially-symmetric system of electric current
in a cylinder of a finite length has been investigated and calculated in [1, 2, 3]. In
this work the three-phase alternating current with high frequency (f > 50Hz) is
fed to each of N discrete circular conductors-electrodes, which are placed on the
internal wall of the cylinder. The magneto-hydrodynamic flow of viscous incom-
pressible weakly electroconductive liquid-electrolyte and temperature are obtained
by the finite difference method, using monotonous finite-difference schemes.

The average axially-symmetric motion of electrolyte and temperature distribu-
tion in a cylinder has been obtained in dependence of the values of frequency and
arrangement of electrodes.
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1. Introduction

In many technological applications it is important to mix and heat an elec-
troconductive liquid, using various magnetic fields. One of the modern areas
of applications developed during last years is effective use of electrical energy
produced by alternating current in production of heat energy.

In traditional heating systems for the dwelling houses fuel is used to warm
up the water, which flows threw the heating system. The offered mathematical
model describes the function of such heating devices in which the water of the
heating system is warmed up with the help of alternating current in one mode.
Conclusion is that it helps to increase the efficiency of the device (there is no
excess loss of heat) and that the device is extremely compact.
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Devices based on this principle are developed during last ten years. This
work presents the mathematical model of one of such devices. It is a finite
cylinder with N metal coils-electrodes positioned on its inner surface with
a fixed distance from each other. By connecting those coils to three–phase
alternating current with height frequency, they irradiate energy.

In this work we consider a finite cylinder

Ω̃ = {(r, z) : 0 < r < a, 0 < z < Z}

with N metal coils-electrodes

Li = {(r, z), r = a, z = zi}, 0 < zi < Z, i = 1, N,

positioned on its inner surface with a fixed distance from each other. Alternat-
ing current with density ji = j0cos(ω̃t+ (i− 1)θ), is fed to each of N discrete
circular conductors. Here ω̃ = 2πf , f and j0 are the frequency and amplitude
of the alternating current, θ = const is the phase (usually θ = 1200) and t is
the time.

The current creates in the weakly conductive liquid-electrolyte the radial
and axial components of the magnetic field as well as azimuthal component
of the induced electric field which, in its turn, creates axial Fz and radial
Fr components of the electromagnetic force (Lorentz’ force) and heat sources
term j2φ (jφ is the azimuthal component of the vector of induced current
density).

For calculating the electromagnetic fields, the averaging method over the
time interval 2π/ω̃ = 1/f is used. The averaged values of force < Fr >,
< Fz > give rise to a liquid (electrolyte) motion, which can be described by
the stationary Navier-Stokes equation. The averaged value of source < j2

φ >
give the distributions of the temperature in the cylinder.

At the inlet of the cylinder we have a uniform velocity U0 ≈ 0.1m
s
. The

liquid have following parameters: kinematic viscosity ν ≈ 10−5 m2

s
, density ρ ≈

1000 kg
m3 , the electric conductivity σ ≈ 100Ω−1m−1, the specific heat capacity

c ≈ 4000 J
kg.K

, the heat conductivity λ ≈ 0.6 W
m.K

and the heat exchange
coefficient α ≈ 12 w

m2.K
. The radius a of the cylinder is 0.05m, the length Z

of the cylinder is 0.25m.

The main aim of this work is to analyze some connection schemes of 9 elec-
trodes and value of frequency influence of vortex and temperature formation
in the cylinder.

2. The Navier-Stokes Equations and Heat Transfer

Equation

The axially-symmetric stationary Navier-Stokes equations for vorticity func-
tion ω, and hydrodynamic-stream function ψ in the cylindrical coordinates
(r, φ, z) are written in the following non-dimensional form ([2]- without circu-
lation):
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where J(ψ, ω) is the Jacobian of the functions ψ and ω, < fφ > is the averaged
azimuthal component of the force curl vector’s,

∆∗(ψ) = r∂(r−1∂ψ/∂r)/∂r + ∂2ψ/∂z2

is the conjugate expression for the Laplace operator, ω = r−1ωφ, ωφ is the
azimuthal component of the velocity curl vector’s, vr = −r−1∂ψ/∂z, vz =
r−1∂ψ/∂r, are radial and axial components of the velocity, Re = U0r0/ν is
the Reynolds number, Te = σω̃(µj0/2πU0)

2/ρ is the Taylor number, µ =
4π 10−7 m.kg

s2.A2 is the magnetic permeability in vacuum.

The equations (2.1) were put into the dimensionless form by scaling all
the lengths to r0 = a (the inlet radius of the tube), the axial velocity vz to
U0, the vorticity ω to ω0 = U0/r

2

0
and stream function ψ to ψ0 = U0r

2

0
.

We get the following dimensionless form of the boundary conditions:
1) In the part of the inlet (z = 0, 0 ≤ r < r1) the axial streams with a

uniform velocity U0 give ω = 0, ψ = 0.5r2; in the other part of the inlet
(z = 0, r1 ≤ r ≤ 1) we have ω = 0, ψ = 0.5(r2

1
+ β(r2 − r2

1
)), where β ≈ 0.1 is

the velocity ratio of the coaxial free stream velocity to axial jet velocity U0.
2) The symmetry conditions along the axis (r = 0) is given by ψ =

∂ψ/∂r = ∂ω/∂r = 0.
3) The outflow boundary conditions at the outlet (z = l = Z/a) are given

by ∂ψ/∂z = ∂ω/∂z = 0.
4) The boundary conditions at walls (r = 1) are given by

ψw =
1

2
(r21 + β(1 − r21)), ω = ωw,

where ωw is the dimensionless wall-vorticity obtained within the frame of
finite-difference method from no-slip conditions [2], r, r1 are the dimensionless
coordinates.

The axially-symmetric stationary distribution of temperature field is de-
scribed by the following non-dimensional boundary-value problem for the heat
transport equation [1, 2]:
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(2.2)

where KT =
(µj0ω̃a)

2σ

(2π)2λ(Tb − Ta)
is the heat sources parameter, Ta is the given

constant external temperature (Tb is the limit temperature), Bi = αa/λ ≈
1 is the Biot number, Φ is the dimensionless axially-symmetric dissipation
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function, Pr = cρν/λ, Pe = PrRe, Ec = U 2

0
/(cTa) are the Prandtl, Peclet

and Eckert numbers, T =
T̄ − Ta

Tb − Ta

is the dimensionless temperature (T̄ is the

dimensional temperature).

3. The Finite-Difference Approximations and Numerical

Results

The presence of large parameters at the first order derivatives (Re, Pe) in the
systems of differential equations causes additional numerical difficulties for
the application of general finite–difference methods. Thus special monotonous
approximations are constructed [3, 4] by using the exponential functions

s(x) =
x

exp(x) − 1
> 0, s′(x) =

ds

dx
< 0, s(0) = 1, s′(0) = −

1

2

with the Patankar approximations in the following form [5]:

s(x) = max
(

(1 − 0.1|x|)5, 0
)

+ max(−x, 0).

We consider an uniform grid with the dimensionless steps 0.1.
As the basis for calculations 9 circular conductors Li are chosen, which

are arranged in the axial direction at the points

zj = [z1, z2, z3, z4, z5, z6, z7, z8, z9],

where zi = 0.2i, i = 1, 9. The results of numerical experiments for

< Fr >, < Fz >, < fφ >, ψ, ω, T

were obtained in the case of

j0 = 2.82104
A

m2
, f = 50, 250, 500; Re = 500, T e = 0.002f,

KT = 80.010−7f2, P r = 67, Ec = 10−8, l = 2.5, Tb − Ta = 65, r1 = 0.5.

The numerical results depend on the arrangement of electrodes and on
the value of frequency. The values of averaged forces < Fz >,< Fr >, curl of
forces < fφ > and the maximal value of the source function < j2φ > depending
of the two arrangement of 9 conductors by numbering nj = [123456789] are
presented in the Table 1. This arrangement is used in [2] and it gives the
maximal temperature in the cylinder.

In Figures 1-4 we can see the vortex and temperature formation in the
cylinder depending on the parameter of frequency f.
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Table 1. The extremal values of averaged forces and curl of forces.

No nj < Fz > < Fr > < fφ > < j2φ >

1 [147258369] [-69.0;3.50] [-36.9;36.9] [-0.2;188] 12.9

2 [963852741] [-3.50;69.0] [-50.5;50.5] [-200;49.] 12.9
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Figure 1. The stream functions ψ ∈

(0.00, 0.34), f = 50.
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Figure 2. The temperature Tmax =
0.02, Tav = 0.007, f = 50.
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Figure 3. The stream functions ψ ∈

(0.00, 1.02), f = 500.
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Figure 4. The temperature Tmax =
0.80, Tav = 0.33, f = 500.

We obtain the following results for the dimensionless values of ψmax,

ω ∈ [ωmin, ωmax], Tmax, Tav = l−1
∫ l

0

∫ 1

0
rT (r, z)drdz (the average dimen-

sionless temperature) depending on two connections of electrodes and on the
parameters f, T e,KT :

1. Conductors are connected to each other skipping two of them, the ends
of 3 wires are in the beginning of electrodes nj = [147258369](see Table 1,
case No = 1):
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a)f = 50, T e = 0.1, KT = 0.02, ψmax = 0.34,

ω ∈ [−7, 13], Tmax = 0.02, Tav = 0.007.

Fig. 1 shows large vortex induced by the Lorentz force at the last electrode,
the orientation of the vortex is clockwise.

Fig. 2 shows the distribution of temperature:

b)f = 250, T e = 0.5, KT = 0.5, ψmax = 0.72,

ω ∈ [−22, 35], Tmax = 0.26, Tav = 0.10,

the vortex by the electrodes and the maximal value of temperature increases
in the cylinder.

c)f = 500, T e = 1.0, KT = 2.0, ψmax = 1.02,

ω ∈ [−35, 52], Tmax = 0.80, Tav = 0.33.

Fig. 3 shows that this vortex increases, Fig. 4 shows the distribution of the
temperature.

2. The ends of 3 wires are in the end of electrodes, nj = [963852741] (see
Table 1, case No = 2):

a)f = 50, T e = 0.1, KT = 0.02, ψ ∈ [−0.23, 0.16],

ω ∈ [−17, 10], Tmax = 0.01, Tav = 0.004,

we have large vortex by the first electrodes in opposite direction, induced by
the Lorentz force;

b)f = 250, T e = KT = 0.5, ψ ∈ [−0.75, 0.16],

ω ∈ [−40, 9], Tmax = 0.16, Tav = 0.07,

the vortex by the electrodes increases,

c)f = 500, T e = 1.0, KT = 2.0, ψ ∈ [−1.28, 0.15],

ω ∈ [−61, 11], Tmax = 0.60, Tav = 0.27,

this vortex increases.

4. Conclusion

1. The results of the numerical experiments with 9 circular conductors re-
ported here can give some new physical conclusions on the flow behavior
in the cylinder.
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2. The averaged values of the electric field, electromagnetic forces and the
azimuthal component of the curl of forces’ vector are calculated for two
arrangement of the electrodes and for different value of frequency.

3. The results of calculations show that the increase of the frequency enlarges
the maximum temperature and the total produced heat.

4. From two different schemes of connection of electrodes, more efficient is
the one where the electrodes are joined skipping two of the electrodes.
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