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Rēzekne Higher Education Institution, Departament of engineering science
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Abstract. In this paper we study the simple algorithms for modelling the transfer
problem of different m substances (m ≥ 2, an example is concentration, moisture,
heat, e.c.) in multi-layer domain. The approximation of corresponding initial bound-
ary value problem of the system of m partial differential equations (PDEs) is based
on the finite volume method. This procedure allows one to reduce the 2D transfer
problem described by a system of PDEs to initial value problem for a system of or-
dinary differential equations (ODEs) of the first or second order. The corresponding
scalar transfer problems are considered in [4, 5]. In a stationary case the exact finite
difference vector scheme is obtained. An example of the problem in two layer media
is considered.
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1. The Mathematical Model

The plate with thickness l is a multilayer media Ω of N layers Ω = {x : x ∈
Ωk, k = 1, N}, where each layer is given in the form

Ωk = {x : xk−1 ≤ x ≤ xk}, x0 = 0, xN = l,

xk(k = 1, N − 1) are interfaces of the layers (the interior grid points in the
finite difference methods). We shall consider the initial - boundary value prob-

lem for finding vector-functions uk = uk(x, t) = (u
(1)
k (x, t), . . . , u

(m)
k (x, t))T

from the following system of PDEs in every layer Ωk, k = 1, N :



420 H.Kalis, I.Kangro

Gk

∂uk

∂t
=

∂

∂x

(

Lk

∂uk

∂x

)

− Qk, x ∈ Ω, t > 0, (1.1)

where Gk is a quadratic matrix m × m with constant elements γ
(i,j)
k such

that det(Gk) 6= 0, Lk is a quadratic positive definite matrix m × m with

constant elements l
(i,j)
k , Qk is vector-column m × 1 with constant elements

q
(j)
k , i, j = 1, m.

The system of PDEs (1.1) can be rewritten in the following form:

∂

∂x

(

Lk

∂uk(x, t)

∂x

)

= Fk, k = 1, N, (1.2)

where Fk = Gku̇k(x, t) + Qk, u̇k =
∂uk

∂t
. We have the following continuity

conditions on the interior surfaces x = xk , k = 1, N − 1 :

{

uk(xk , t) = uk+1(xk , t)

Lku′
k(xk, t) = Lk+1u

′
k+1(xk, t),

(1.3)

and boundary conditions on the exterior surfaces x = x0 = 0, x = xN = l :

{

L1u
′
1(0, t) = α0(u1(0, t) − T0)

LNu′
N (l, t) = αl(Tl − uN(l, t)),

(1.4)

where u′ =
∂u

∂x
, α0, αl are diagonal-matrixes with constant elements

α
(j)
0 , α

(j)
l , j = 1, m,

T0, Tl are known vector-functions with elements T
(j)
0 (t), T

(j)
l (t), j = 1, m.

For the initial condition at t = 0 we define

uk(x, 0) = φ(x), k = 1, N, (1.5)

where φ is known vector-column. If the elements of matrix α0 or αl are equal
to infinity (α0 = ∞, or αl = ∞, ) then we have the first kind boundary
conditions

u1(0, t) = T0, uN(l, t) = Tl. (1.6)

2. The 2-Layer Problem and Approximation of Integrals

Using the method of finite volumes for scalar functions (see [3]) we obtain
the following exact vector finite-difference scheme with respect to grid points
xk, k = 0, N and given function Fk [5]:

L1h
−1
1 (u1 − u0) − α0(u0 − T0) = R̄+

0 , (2.1)
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Lk+1h
−1
k+1(uk+1 − uk) − Lkh−1

k (uk − uk−1) = R̄k, k = 1, N − 1, (2.2)

αl(Tl − uN) − LNh−1
N (uN − uN−1) = R̄−

N . (2.3)

The right side of expressions R±

k contain integrals of derivatives uk(x, t). In the
stationary case u̇k = 0 this scheme is exact. For non-stationary problem u̇k 6=
0, to approximate the integrals we considered different quadrature formulas
[5].

Now we restrict to the case of only two layers, that is

N = 2, x1 = h1, x2 = l = h1 + h2, α0 = ∞, u0 = T0.

Then the unknown vector-functions are u1, u2. In the non-stationary case the
finite-difference scheme is given by

{

L2h
−1
2 (u2 − u1) − L1h

−1
1 (u1 − T0) = G2R

+
1 + G1R

−

1 + I1

αl(Tl − u2) − L2h
−1
2 (u2 − u1) = G2R

−1
2 + I−2 ,

(2.4)

where I1 = I−1 + I+
1 , and

R−

1 =
1

h1

∫ h1

0

xu̇1(x, t) dx = h1J3, R+
1 =

1

h2

∫ l

h1

(l − x)u̇2(x, t) dx = h2J1,

R−

2 =
1

h2

∫ l

h1

(x − h1)u̇2(x, t) dx = h2J2, J1 =

∫ 1

0

(1 − x̄)V2(x̄) dx̄,

J2 =

∫ 1

0

x̄V2(x̄) dx̄, x̄ =
x − h1

h2
, V2(x̄) = u̇2(h1 + h2x̄, t),

J3 =

∫ 1

0

x̄V1(x̄) dx̄, x̄ =
x

h1
, V1(x̄) = u̇1(h1x̄, t).

In the non-stationary case we compute integrals Jj , j = 1, 2, 3 approxi-
mately with quadrature formulas in the following way (j = 1, 2):

Jj =A
(j)
1 V2(0) + A

(j)
2 V2(1) + A

(j)
3 V ′

2(1) + B
(j)
1 V ′′

2 (0) + B
(j)
2 V ′′

2 (1) + rj , (2.5)

J3 = A
(3)
1 V1(0) + A

(3)
2 V1(1) + B

(3)
1 V ′′

1 (0) + B
(3)
2 V ′′

1 (1) + r3, (2.6)

where for j = 1, 2:

rj =
h5

2

5!

∂5u̇2(ξj , t)

∂x5
Cj , ξj ∈ (h1, l), r3 =

h4
1

4!

∂4u̇1(ξ3, t)

∂x4
C3, ξ3 ∈ (0, h1)

are the vector-errors terms, A
(j)
k , B

(j)
k , Cj(j, k = 1, 2, 3) are the indefinite co-

efficients.

Using the power functions x̄i, i = 0, 1, ... in (2.5)–(2.6) similarly the scalar
case [3] for the fixed coordinates of vectors V1(x̄), V2(x̄) we get the following

two systems of linear algebraic equations for A
(j)
k , B

(j)
k :
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1

(i + 1)(i + 2)
= A

(1)
1 0i + A

(1)
2 + iA

(1)
3 + i(i − 1)(B

(1)
1 0i−2 + B

(1)
2 ),

1

i + 2
= A

(2)
1 0i + A

(2)
2 + iA

(2)
3 + i(i − 1)(B

(2)
1 0i−2 + B

(2)
2 ), i = 0, 4,

(2.7)

and

1

i + 2
= A

(3)
1 0i + A

(3)
2 + i(i − 1)(B

(3)
1 0i−2 + B

(3)
2 ), i = 0, 3, (2.8)

where 0i = 1 for i ≤ 0.

Simple computations show that the solutions of the corresponding systems
(2.7) – (2.8) are given by

A
(1)
1 =

7

30
, A

(1)
2 =

4

15
, A

(1)
3 = −

1

10
, B

(1)
1 = −

1

180
, B

(1)
2 =

1

72
,

A
(2)
1 =

1

15
, A

(2)
2 =

13

30
, A

(2)
3 = −

1

10
, B

(2)
1 = −

1

360
, B

(2)
2 =

1

90
,

A
(3)
1 =

1

6
, A

(3)
2 =

1

3
, B

(3)
1 = −

7

360
, B

(3)
2 = −

1

45
.

Constants Cj in the residual rj are determined using power functions x̄4

and x̄5 :

C1 = −
13

630
, C2 = −

4

315
, C3 =

1

10
.

Using the vector difference equations (2.4) and the right-side integrals
approximations (2.5), (2.6) with neglected error terms rj , j = 1, 3 we have
the following vector system of linear ODEs of second order (u̇0 = ü0 = 0,

ü =
∂2u

∂t2
, α0 = ∞) :















G2h2[A
(1)
1 u̇1 + (A

(1)
2 − h2A

(1)
3 L−1

2 )u̇2 + h2
2B

(1)
1 L−1

2 G2ü1

+h2
2B

(1)
2 L−1

2 G2ü2] + G1h1[A
(3)
2 u̇1 + h2

1B
(3)
2 L−1

1 G1ü1]

+I1 = h−1
2 L2(u2 − u1) − h−1

1 L1(u1 − T0),

(2.9)







G2h2[A
(2)
1 u̇1 + (A

(2)
2 − h2A

(2)
3 L−1

2 )u̇2 + h2
2B

(2)
1 L−1

2 G2ü1

+h2
2B

(2)
2 L−1

2 G2ü2] + I−2 = αl(Tl − u2) − h−1
2 L2(u2 − u1).

(2.10)

The initial conditions for ODEs (2.9), (2.10) are given by

{

u1(0) = φ(h1), u2(0) = φ(l), u̇1(0) = G−1
1 (L1φ

′′(h1) − Q1),

u̇2(0) = G−1
2 (L2φ

′′(l) − Q2).
(2.11)

Here one should take in account that from (1.1)–(1.6) it follows:
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V ′

2(1) = h2
∂

∂x
u̇2(l, t) = −h2L

−1
2 αlu̇2,

V ′′

1 (0) = h2
1

∂2

∂x2
u̇1(0, t) = h2

1

∂

∂t
u′′

1(0, t) = h2
1L

−1
1 G1ü0,

V ′′

1 (1) = h2
1

∂2

∂x2
u̇1(h1, t) = h2

1L
−1
1 G1ü1,

V ′′

2 (0) = h2
2L

−1
2 G2ü1, V ′′

2 (1) = h2
2L

−1
2 G2ü2.

Remark 1. If α0 = αl = ∞, u0 = T0, u2 = Tl, then the vector finite–difference
equation follows from (2.4):

h−1
2 L2(Tl − u1) − h−1

1 L1(u1 − T0) = G2h2J1 + G1h1J3 + I1, (2.12)

where

J1 = A
(1)
1 V2(0) + A

(1)
2 V2(1) + B

(1)
1 V ′′

2 (0) + B
(1)
2 V ′′

2 (1) + r1,

r1 =
h4

2

4!

∂4u̇2(ξ1, t)

∂x4
C1, ξ1 ∈ (h1, l),

A
(1)
1 =

1

3
, A

(1)
2 =

1

6
, B

(1)
1 = −

1

45
, B

(1)
2 = −

7

360
, C1 =

1

10
.

Therefore the system of ODEs of second order (u̇0 = u̇2 = 0, ü0 = ü2 = 0) is
given in the following form







G2h2[A
(1)
1 u̇1 + h2

2B
(1)
1 L−1

2 G2ü1] + G1h1[A
(3)
2 u̇1

+h2
1B

(3)
2 L−1

1 G1ü1] + I1 = h−1
2 L2(Tl − u1) − h−1

1 L1(u1 − T0).
(2.13)

If integrals J1, J3 are approximated without the derivatives then we get
the following system of ODEs of first order

1

3
(h2G2 + h1G1)u̇1 + I1 = h−1

2 L2(Tl − u1) − h−1
1 L1(u1 − T0). (2.14)

3. Some Numerical Results and Examples

Example 1. Let assume that

m = 2, Q1 = Q2 = 0, L1 = L2 = L, T0 = Tl = 0, G1 = G2 = G, l = 1,

φ(x) = (sin(πx), sin(πx)T , h1 = h2 = h = 0.5,

L = E =

(

1 0
0 1

)

, G =

(

1 0
1 1

)

, G2 =

(

1 0
2 1

)

, G−1 =

(

1 0
−1 1

)

,

then the exact solution of PDEs problem (1.1)–(1.6) is given by
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u(x, t) = (exp(−π2t) sin(πx), exp(−π2t)(1 + π2t) sin(πx))T ,

u1 = u(h, t) = (exp(−π2t), exp(−π2t)(1 + πt))T .

This is the solution of ODEs

Gü1 = πu1.

From the first order ODEs (2.14) we get the vector initial-value problem

Gu̇1 = −12u1, u1(0) = (1, 1)T ,

and the solutions with error O(h2) is given by

u1 = u(h, t) =
(

exp(−12t), exp(−12t)(1 + 12t)
)T

.

Therefore the value π2 is replaced with 12.
From second order ODEs (2.13) we get the following initial-value problem

{

b1G
2ü1 + a1Gu̇1 + u1 = 0

u1(0) = (1, 1)T , u̇1(0) = −G−1(π2, π2)T = (−π2, 0)T ,
(3.1)

where

b1 = 0.5h4(B
(1)
1 + B

(3)
2 ) =

89

11520
, a1 = 0.5h2(A

(1)
1 + A

(3)
3 ) =

7

48
.

Let denote u
(1)
1 = y, u

(2)
1 = z, then we have the initial-value problem for

system of two ODEs of the second order

{

b1ÿ + a1ẏ + y = 0, y(0) = 1, ẏ(0) = −π2,

b1z̈ + a1ż + z = −2b1ÿ − a1ẏ, z(0) = 1, ż(0) = 0.
(3.2)

The solution with error O(h4) is given by

y(t) = D1 exp(µ1t) + D2 exp(µ2t),

z(t) = D1(1 − µ1t) exp(µ1t) + D2(1 − µ2t) exp(µ2t),

where µ1,2 = −a1/(2b1) ±
√

(a1/(2b1))2 − 1/b1,

D1 =
µ2 + π2

µ2 − µ1
, D2 =

−π2 + µ1

µ2 − µ1
.

The results of calculations obtained by MAPLE are presented in Table 1,

where u∗, v∗ are exact values of u
(1)
1 , u

(2)
1 , up2, vp2− values with approximation

O(h2) and up4, vp4 values with approximation O(h4).
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Table 1. The values of vector u(0.5, t) at different time moments t.

t u∗ v∗ up4 vp4 up2 vp2

.1 .3727 .7406 .383 .750 .301 .663

.2 .1389 .4131 .147 .428 .091 .308

.3 .0518 .2051 .056 .218 .027 .126

.4 .0193 .0955 .021 .104 .008 .048

.5 .0072 .0427 .008 .048 .002 .017

Example 2. In [2] the model textile package is described by the system of two
equations for transfer of heat and moisture given in the following form















a1
∂C

∂t
− b1

∂T

∂t
= c1

∂2C

∂x2

−b2
∂C

∂t
+ a2

∂T

∂t
= c2

∂2T

∂x2
,

(3.3)

where ai, bi, ci(i = 1, 2), are positive constants. The system of two PDEs (3.3)
is written in form (1.1), where Q = 0, u = (C, T )T is the vector-column,

G =

(

a1 −b1

−b2 a2

)

, L =

(

c1 0
0 c2

)

, det(G) > 0.

Example 3. In [1] for modelling heat (temperature T ) and moisture (M) trans-
port in wood plate or paper sheet the following system of PDEs is considered















∂T

∂t
=

∂

∂x
(Dh

∂M

∂x
+ Eh

∂T

∂x
)

∂M

∂t
=

∂

∂x
(Dm

∂M

∂x
+ Em

∂T

∂x
),

(3.4)

where Dh, Dm are the heat and moisture coefficients of the moisture gradients,
Eh, Em are the corresponding coefficients of the temperature gradients. The
system (3.4) for constant coefficients is given in the matrix form (1.1), where
Q = 0, G = E,

L =

(

Dh Eh

Dm Em

)

, u = (T, M)T , Dh > 0, DhEm − EhDm > 0.

4. Conclusions

The 2D transfer problem described by an initial boundary value problem of
the system of PDEs with piece-wise constant coefficients is approximated by
the initial value problem of a system of ODEs of the first or second order.
For increasing the accuracy of approximation, the second order differential
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equations are taken instead of initial value problem of system of first order
ODEs (a corresponding example in two layer domain is consider). Such a
procedure allows us to obtain a simple engineering algorithm for solving mass
transfer equations for different substances in multilayered domain.
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