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Abstract. A boundary value problem for an elliptic equation with a small param-
eter before the highest derivatives in a strip is considered. A method of reduction of
problem to a system of ordinary differential equations on a finite interval is inves-
tigated. To numerical solution of problem the piecewise uniform mesh condensing
along the strip and in a neighbourhood of the concentrated source is used.
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1. The Method of Lines for an Elliptic Problem

Consider a boundary value problem

ε2 ∂2u(x, y)

∂x2
+ ε2 ∂2u(x, y)

∂y2
− c(x, y)u(x, y) = f(x, y), (1.1)

ε
∂u(+0, y)

∂x
− ε

∂u(−0, y)

∂x
= −Q(y),

u(x, 0) = φ1(x), u(x, 1) = φ2(x), lim
x→±∞

u(x, y) = 0

in a strip D = {−∞ < x < ∞, 0 ≤ y ≤ 1}.
Suppose, that functions c and f are sufficiently smooth on D,

ε ∈ (0; 1], c(x, y) ≥ α > 0, lim
x→±∞

f(x, y) = 0,

lim
x→−∞

c(x, y) = c1(y), lim
x→∞

c(x, y) = c2(y), lim
x→±∞

φi(x) = 0, i = 1, 2.
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We use the following norms for functions, vectors and matrices:

‖g(x)‖ = max
x

|g(x)|, ‖g(x, y)‖ = max
x,y

|g(x, y)|,

‖x‖ = max
i

|xi|, ‖A‖ = max
i

n
∑

j=1

|Aij |, 1 ≤ i ≤ n.

Solution of problem (1.1) has boundary layers along the strip on y and in
a neighbourhood of the concentrated source on x.

Lemma 1. Let u(x, y) is the solution of problem (1.1). Then

‖u(x, y)‖ ≤ ‖Q(y)‖
2
√

α
exp(−

√
αε−1|x|) +

‖f(x, y)‖
α

+ max
i

‖φi(x)‖.

Using method of lines we reduce an elliptic problem to the system of
ordinary differential equations on an infinite interval. To take into account
boundary layers on value y, we use nonuniform mesh [5]

Ωy = {yj : 0 ≤ j ≤ M} , σ = min{1/4, ε lnM},

yj =











4jσ/M, 0 ≤ j ≤ M/4,

σ + 2 (j − M/4) (1 − 2σ)/M, M/4 ≤ j ≤ 3M/4,

1 − σ + 4 (j − 3M/4)σ/M, 3M/4 ≤ j ≤ M

and approximate the derivative on this mesh. Let the difference scheme has
the form:

ε2 d2Vj

dx2
+ ε2Λyy,jV − c(x, yj)Vj = f(x, yj), 0 < j < M,

εV ′

j (+0) − εV ′

j (−0) = −Q(yj),

V0(x) = φ1(x), VM (x) = φ2(x), lim
x→±∞

Vj = 0,

Λyy,jV =
hj(Vj+1 − Vj) − hj+1(Vj − Vj−1)

hjhj+1(hj + hj+1)/2
,

then, according to [5], the following estimate is valid:

max
j

max
x

|Uj(x) − Vj(x)| ≤ C

M2
ln2 M, U = [u]Ωy

.

So, we get a system of differential equations on an infinite interval:

ε2V ′′(x) −A(x)V (x) = F (x), (1.2)

εV ′(+0) − εV ′(−0) = −Q, lim
x→±∞

V (x) = 0,
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where matrix A(x) is a three-diagonal n×n nonsingular M-matrix, n = M−1,

n
∑

j=1

Aij(x) ≥ α > 0, Aij(x) ≤ 0, j 6= i, i = 1, . . . , n,

lim
x→−∞

A(x) = A1, lim
x→∞

A(x) = A2, lim
x→±∞

F (x) = 0.

If α >
8(1 − 4σ)(1 − 3σ)

M2
, then

∑n
i=1 Aij(x) > 0. The existence and unique-

ness of solution of problem (1.2) are proved.

Lemma 2. Let V (x) is the solution of problem (1.2). Then

‖V (x)‖ ≤ 1

α
max

x
‖F (x)‖ +

‖Q‖
2
√

α
exp

(

−
√

αε−1|x|
)

.

Lemma 3. Let V (x) be the solution of problem (1.2). Then there is a constant

C, such that

|V (k)
i (x)| ≤ C

[

1 +
1

εk
exp(−

√
αε−1|x|)

]

, i = 1, . . . , n, k ≥ 1.

2. Reduction of the Problem to Finite Interval

To solve problem (1.2) numerically it is necessary to reduce it to a problem
specified on a finite interval. For this purpose we extract sets of solutions
satisfying the limiting conditions at infinity. These sets are defined as systems
of first order differential equations [1]:

εV ′(x) + B1(x)V (x) = β1(x), x < 0, (2.1)

εV ′(x) + B2(x)V (x) = β2(x), x > 0, (2.2)

where matrices B1(x), B2(x) are solutions of singular problems for the matrix
Riccati equations:

εB′

1(x) −B2
1(x) + A(x) = 0, lim

x→−∞
B1(x) = −

√

A1, (2.3)

εB′

2(x) −B2
2(x) + A(x) = 0, lim

x→∞
B2(x) =

√

A2, (2.4)

and the vector-functions β1(x), β2(x) are solutions of singular Cauchy prob-
lems:

εβ′

1(x) −B1(x)β1(x) = F (x), lim
x→−∞

β1(x) = 0, (2.5)

εβ′

2(x) −B2(x)β2(x) = F (x), lim
x→∞

β2(x) = 0. (2.6)

Using the extracted sets we reduce problem (1.2) to the problem on a finite
interval:
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ε2V ′′(x) −A(x)V (x) = F (x), L1 < x < L2, x 6= 0, (2.7)

εV ′(+0) − εV ′(−0) = −Q,

εV ′(L1) + B1(L1)V (L1) = β1(L1), L1 < 0,

εV ′(L2) + B2(L2)V (L2) = β2(L2), L2 > 0.

It is easy to prove that solutions of problems (1.2) and (2.7) coincide for
all x ∈ [L1; L2], where L1 < 0, L2 > 0 can take any finite arbitrary values.

The matrices B1(x), B2(x) and the vector-functions β1(x), β2(x) from
singular Cauchy problems (2.3)-(2.6) can be found as asymptotic series on
parameter ε :

Bm
k (x) =

m
∑

i=0

Bk,i(x) εi, β
m
k (x) =

m
∑

i=0

βk,i(x) εi, k = 1, 2.

Then we get recurrent formulas for coefficients Bk,i and βk,i :

Bk,0(x)Bk,i(x) + Bk,i(x)Bk,0(x) = B′

k,i−1(x) −
i−1
∑

j=1

Bk,j(x)Bk,i−j (x), (2.8)

B1,0(x) = −
√

A(x), B2,0(x) =
√

A(x),

Bk(x)βk,i(x) = β′

k,i−1(x), Bk(x)βk,0(x) = −F (x), k = 1, 2.

For formulation of problem (2.7) it is enough to calculate the coefficients
Bk and βk at x equal to L1 and L2. To find the square root of M-matrix A

convergent iterative method [2] is used. Since A(x) is M-matrix, hence [6] it
can be written for any finite value L in the form

A(L) = s(I −P), s > 0, Pii > 0, Pij ≥ 0, j 6= i, i, j = 1, n, ρ(P) < 1.

Then
√

A(L) =
√

s(I −Y∗), where Y∗ denote the limit of the sequence

Yk+1 =
1

2
(P + Y2

k), Y0 = 0. (2.9)

Lemma 4. Let A be a nonsingular M-matrix with diagonal dominance. Then√
A (2.9) is a nonsingular M-matrix with a diagonal dominance.

It follows from Lemma 4 that zero members of asymptotic series for ma-
trices Bk are M-matrices.

The equation on Bk(x) (2.8) is continuous Silvester equation which is
uniquely solvable for any right side function whenever λi(Bk,0)+λj(Bk,0) 6= 0
for any i, j [4]. Since Bk,0(x) are nonsingular M-matrices, hence the real parts
of their eigenvalues are positive.

To solve such equations there are orthogonal methods, for example,
Bartelse–Stuart’s and Golub–Nesh–van–Loan’s algorithms [4].
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Lemma 5. Bk(x) are M-matrices for small ε,

|(Bk(x))ij − (Bk,0(x))ij | ≤ Ckε, i, j = 1, . . . , n, k = 1, 2.

Lemma 6. Let B̃1(x), B̃2(x) are solutions of problems (2.3), (2.4) with the

matrix Ã(x) such that

‖A− Ã‖ ≤ ∆, ‖A1/2
k − ˜

A
1/2
k ‖ ≤ δ,

(−1)k
n

∑

i=1

(Bk(x))ij ≥ α̃ > 0, (−1)k
n

∑

j=1

(B̃k(x))ij ≥ α̃ > 0.

Then

‖Bk − B̃k‖ ≤ C(δ + ∆), k = 1, 2.

Matrices Bk(x) and vector-functions βk(x), k = 1, 2, can be found only
approximately. Next we obtain a stability estimate of the solution for problem
(2.7) with respect to errors in these coefficients.

Theorem 1. Let Ṽ (x) be a solution of problem (2.7) with the coefficients

B̃k(Lk), β̃k(Lk), k = 1, 2, such that

(−1)k
n

∑

j=1

(B̃k(x))ij ≥ α̃ > 0,

‖Bk(Lk) − B̃k(Lk)‖ ≤ ∆, ‖βk(Lk) − β̃k(Lk)‖ ≤ ∆.

Then for all L1 ≤ x ≤ L2, we get the estimate

‖V (x) − Ṽ (x)‖ ≤ C∆.

The solution of problem (2.7) has a boundary layer in a neighbourhood of
the concentrated source. To get a difference scheme with the property of an
uniform convergence, we use the following piecewise uniform mesh:

Ωx = {xj : 0 ≤ j ≤ 2N} , q = min{1/2, ε lnN},

xj =



















L1 + 2(−L1 − q)j/N, 0 ≤ j ≤ N/2,

−q + 2q (j − N/2) /N, N/2 < j ≤ N,

2q (j − N) /N, N < j ≤ 3N/2,

q + 2(L2 − q) (j − 3N/2)/N, 3N/2 < j ≤ 2N.

The difference scheme is given as:

2ε2
hj(V

h
j+1 − V h

j ) − hj+1(V
h
j − V h

j−1)

hjhj+1(hj + hj+1)
−AjV

h
j = F j ,
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ε
V h

N+1 − V h
N

hN+1
− ε

V h
N − V h

N−1

hN
= −Qj ,

ε
V h

1 − V h
0

h1
+ B1(L1)V

h
0 = β1(L1),

ε
V h

2N − V h
2N−1

h2N
+ B2(L2)V

h
2N = β2(L2),

where ‖V − V h‖ ≤ C(N−2 ln2 N + N−1) according to [3].
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