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Abstract. In the present paper multistage finite differences of different orders for
functions, analytical in the half-plane, are investigated. The main result is assertion
on the absence of functions analytic in the half-plane, which have two nonvanishing
finite differences and the difference between their orders exceeds a certain positive
number. The proof is based on the properties of univalent functions. In particular,
estimations for the derivatives of univalent functions, obtained by I.A. Aleksandrov
as the corollary of Louis de Branges theorem about the coefficients of the univalent
and normalized in the unit disk functions, are used.
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1. Introduction

Let F (z) be an analytical function in the domain D (α) = {|arg z| < π/(2α)},
where α ≥ 1. Let also D̃ (α) = {|arg z| ≤ π/(2α)} \{0}. Let us define finite
difference of n-th order of function F (z) by recurrent formula

∆n [F (z) ; z, ζ1, ..., ζn] = ∆1 [∆n−1 [F (z) ; z, ζ1, ..., ζn−1] ; z, ζn] ,

∆1 [F (z) ; z, ζ1] = F (z + ζ1) − F (z) , ∆0 [F (z) ; z] ≡ F (z) .

Note, that if z ∈ D (α) and ζ1, ..., ζn ∈ D̃ (α) , then z+ζ1+...+ζn ∈ D (α) . Let
Qn (D (α)) be a class of analytical in domain D(α) functions with property
∆n [F (z) ; z, ζ1, ..., ζn] 6= 0 for any z ∈ D(α), ζ1, ..., ζn ∈ D̃ (α). Then there
arise a question on the existence of functions, which belong simultaneously
to all classes Qn (D (α)) , n = 0, 1, 2, . . .. In case α > 1, the example of such
function is given by F (z) = ez. Indeed,

∆n [ez; z, ζ1, ..., ζn] = ez
(

eζ1 − 1
)

...
(

eζn − 1
)

, z ∈ D (α) , ζ1, . . . , ζn ∈ D̃ (α) .
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If α = 0, then F (z) = ez /∈ Qn(D(1)) for any natural n. The attempts of the
authors to find the function, which belongs to all classes Qn(D(1)), did not
lead to success and thus a hypothesis about the absence of such function was
formulated. We will denote D(1) and D̃ (1) by Π and Π̃ , respectively.

Further, we will restrict to the case of the half-plane Π. Some properties
of functions of the class Qn(Π) were investigated in [5]. In this work we
establish the validity of the given hypothesis, i.e., we have proved, that the
functions, which belong to all classes Qn(Π), n = 0, 1, 2, . . . , in fact do not
exist. Moreover, we have shown that there is no functions, belonging to two
classes Qn(Π), if a difference in their orders exceeds a certain positive number.

Theorem 1. There is no such function, which simultaneously belongs to two

classes Qm(Π) and Qk(Π), where k − m ≥ 5.

For the proof of this theorem some definitions and auxiliary assertions will
be necessary.

2. Univalent Functions and their Relation with

Multistage Finite Differences

Let us remind the determination of the univalent functions, which play im-
portant role in the geometric theory of the complex variable functions and
realization of the conformal mappings([2, 3, 4]). Analytical in the region D
function F (z) is called univalent function in the region D, if F (z1) 6= F (z2)
for any noncoincident z1, z2 ∈ D.

In this work we use corollary of the known Bieberbach theorem about the
estimations of coefficients of functions, which are univalent and normed in the
unit disk. This corollary was proven by Louis de Branges in 1985 ([1, 2]). Let
us denote by K1(D) a class of univalent in domain D functions. In this paper
we will use properties of functions from the class K1(D) for the solution of
problems, connected to the multistage finite differences. In this direction the
following lemma plays the key role.

Lemma 1. The class K1(Π) coincides with class Q1(Π).

Proof. Let us take the arbitrary two different points ξ, ζ in the half plane
Π and let |ζ| ≥ |ξ| . Then such a point ζ1 ∈ Π̃ exists that ζ = ξ + ζ1. Let us
assume that the function F (z) belongs to the class Qn(Π). This means that

∆1 [F (z) ; ξ, ζ1] = F (ξ + ζ1) − F (ξ) = F (ζ) − F (ξ) 6= 0,

and therefore F (z) ∈ K1(Π) . Let us assume now that F (z) ∈ K1(Π) . This
means that

F (ζ) − F (ξ) = F (ξ + ζ1) − F (ξ) 6= 0.

Hence it follows that F (z) ∈ Q1(Π) . Thus, lemma is proved. �
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Lemma 2. If F (z) ∈ K1(D), then aF (z)+b ∈ K1 (D) , where a, b are complex

numbers and a 6= 0. Furthermore, if F (z) ∈ K1(D), then F ′(z) 6= 0 for any

z ∈ D [3].

Lemma 3. If F (z) ∈ Qn(Π), then F (k) ∈ Qn−k(Π), k = 1, 2, . . . , n [5].

Lemma 4. For any fixed natural n the following identity with respect to z is

valid
n−1
∑

k=0

Ck
n−1 (k + 1 + z) = 2n−2 (n + 1 + 2z), (2.1)

where Ck
n−1 are the binomial coefficients.

Proof. For n = 1 the identity (2.1) is correct. Let n ≥ 2 and

ϕ (z) =

n−1
∑

k=0

Ck
n−1z

k = (1 + z)
n−1

.

Then

ϕ′ (1) =

n−1
∑

k=0

Ck
n−1k = (n − 1) 2n−2.

Hence

n−1
∑

k=0

Ck
n−1 (k + 1 + z) =

n−1
∑

k=0

Ck
n−1k + (1 + z)

n−1
∑

k=0

Ck
n−1

= (n − 1) 2n−2 + (1 + z) 2n−1 = 2n−2 (n + 1 + 2z) .

�

3. Some Auxiliary Estimations

Let us denote by K̃1(Π) the class of analytical and univalent in half plane Π
functions normalized by conditions F (1) = 0, F ′(1) = 1 and let K̃1(E) be the
class of analytical in the unit disk E (i.e. in the disk |ω| < 1) functions g(ω),
normalized by conditions g(0) = 0, g′(0) = 1.

Let us note that K̃1 (Π) ⊂ K1 (Π) and K̃1 (E) ⊂ K1 (E) . If z =
(1 + ω)/(1 − ω), where z ∈ Π , ω ∈ E, then one-to-one correspondence be-
tween classes K̃1(Π) and K̃1(E) is established by the formula

F (z) = 2g(ω). (3.1)

Dependence between the derivatives of these functions is defined by the for-
mula

F (n) (z)

n!
=

(ω − 1)
n+1

2n−1

n−1
∑

k=0

Ck
n−1

g(k+1) (ω)

(k + 1)!
(ω − 1)k, . . . n = 1, 2, . . . , (3.2)
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where Ck
n−1 are binomial coefficients ([6]). For any g(ω) ∈ K̃1(E) the estimates

|g(m)(ω)|

m!
≤

m + |ω|

(1 − |ω|)
m+2 , m = 0, 1, 2, . . . (3.3)

1 − |ω|

(1 + |ω|)
3 ≤ |g′ (ω)| ≤

1 + |ω|

(1 − |ω|)
3 (3.4)

are valid (see [1, 2]). Using relationships (3.1) – (3.4) for the function F (z) ∈
K̃1(Π) we obtain the following estimations:

(1 − |ω|) |1 − ω|
2

(1 + |ω|)
3 ≤ |F ′ (z)| ≤

(1 + |ω|) |1 − ω|
2

(1 − |ω|)
3 , (3.5)

∣

∣F (n) (z)
∣

∣

n!
≤

|1 − ω|n+1

2n−1

n−1
∑

k=0

Ck
n−1

∣

∣g(k+1) (ω)
∣

∣

(k + 1)!
|1 − ω|

k
, n = 1, 2, . . . (3.6)

4. Proof of Theorem 1

First, let us consider the case, when m = 1 and then k = n ≥ 6. Let us
suppose that a certain function F1(z) belongs simultaneously to two classes
Q1(Π) and Qn(Π), where n ≥ 6. Since F1(z) ∈ Q1(Π), then according to
Lemma 1 we have F1(z) ∈ K1(Π). But then due to Lemma 2 we obtain

F (z) =
F1 (z) − F1 (1)

F
′

1 (1)
∈ K̃1 (Π) .

Further, since F1(z) ∈ Qn(Π), then from Lemma 3 we have F
(n−1)
1 (z) ∈

K1(Π). By using Lemma 2, we obtain that F (n−1)(z) ∈ K1(Π) and

Ψ(z) =
F (n−1) (z) − F (n−1) (1)

F (n) (1)
∈ K̃1 (Π) .

Using (3.4), we get

(1 − |ω|) |1 − ω|
2

(1 + |ω|)
3 ≤ |Ψ ′ (z)| =

∣

∣

∣

∣

F (n) (z)

F (n) (1)

∣

∣

∣

∣

≤
(1 + |ω|) |1 − ω|

2

(1 − |ω|)
3 . (4.1)

Taking into account (3.6), the estimations (4.1) can be written in the following
form

(1 − |ω|) |1− ω|
2

(1 + |ω|)3
≤ |Ψ ′

1 (z)| =

∣

∣

∣

∣

F (n) (z)

F (n) (1)

∣

∣

∣

∣

≤
n! |1 − ω|

n+1

∣

∣F (n) (1)
∣

∣ 2n−1

n−1
∑

k=0

Ck
n−1

∣

∣g(k+1) (ω)
∣

∣

(k + 1)!
|1 − ω|

k
.
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Using estimation (3.3), we get the dual inequality

(1 − |ω|) |1 − ω|
2

(1 + |ω|)
3 ≤

∣

∣

∣

∣

F (n) (z)

F (n) (1)

∣

∣

∣

∣

≤
n! |1 − ω|

n+1

∣

∣F (n) (1)
∣

∣ 2n−1

n−1
∑

k=0

Ck
n−1

k + 1 + |ω|

(1 − |ω|)
k+3

|1 − ω|
k
.

From here it follows that

(1− |ω|) |1 − ω|
2

(1 + |ω|)
3 ≤

n! |1 − ω|
n+1

∣

∣F (n) (1)
∣

∣ 2n−1

n−1
∑

k=0

Ck
n−1

k + 1 + |ω|

(1 − |ω|)
k+3

|1 − ω|
k
. (4.2)

Let ω = t in (4.2), where 0 < t < 1. Then

2n−1

∣

∣F (n) (1)
∣

∣

n!
≤ (1 + t)3 (1 − t)5

n−1
∑

k=0

Ck
n−1 (k + 1 + t).

Taking into account Lemma 4 we obtain

∣

∣F (n) (1)
∣

∣

n!
≤

(1 + t)
3
(n + 1 + 2t) (1 − t)

n−5

2
.

Since F (n)(z) 6= 0 and n ≥ 6, then the latter inequality cannot be fulfilled
when values of t are close enough to 1. The obtained contradiction proves
theorem for the first case, when m = 1. Let now m ≥ 2. If F (z) ∈ Qm(Π)
and F (z) ∈ Qk(Π), then, designating Φ(z) = F (m−1)(z) and using Lemma 3,
we will obtain that Φ(z) ∈ Q1(Π) and Φ(z) ∈ Qn(Π). As a result we again
have the first case and Theorem 1 is proven.

Remark. A question about existence of the univalent in the half-plane func-
tions, which belong to class Q5(Π), remains open.

References

[1] I.A. Aleksandrov. The L. de Branges proof of the I. M. Milin and L. Bieberbach
conjectures. Sib. Math. J., 28(2), 7 – 20, 1987.

[2] I.A. Aleksandrov. Methods of the geometric theory of the analytic functions.
Tomsk, 2001. (in Russian)

[3] P.L. Duren. Univalent functions. Departament of Math. University of Michigan,
Ann. Arbor, M. 448109 U.S.A., 1983.

[4] J. Jenkins. Univalent functions and conformal mapping. Berlin, Springer-Verlag,
1958.

[5] E.E. Kirjackij. On functions with nonvanishing finite difference. Lith. Math. J.,
30(2), 275 – 287, 1990. (in Russian)

[6] J. Kirjackis. On the existence of functions being univalent in half-plane together
with derivatives. Nonlinear Analysis: Modelling and Control, 6(2), 43 – 50,
2001.




