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Abstract. The linear stability of a thin film of viscous fluid on the inside of a
cylinder with horizontal axis, rotating about this axis is examined in this paper.
Both axial and azimuthal components of the hydrostatic pressure gradient are taken
into account, which yield solutions that collapse in both dimensions. Despite the
existence of these explosive instabilities, all solutions with harmonic dependence on
the axial variable and time are neutrally stable. This type of instability has been
described in previous papers. However, no actual solution to describe the movement
of the film of liquid through the cylinder has been presented. This paper will rectify
this and examine the properties of such a solution.
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1. Introduction

The flow of a thin film of liquid entrained on the inside of a rotating horizontal
cylinder is commonly termed as rimming flow (see Figure 1). Recent develop-
ments in rimming flow have progressed with the discovery of linear equations
with very unusual properties. In [4], and later in [2], the concept of ‘explosive’
instability was introduced and these properties are described. Initialy in [4] an
asymptotic solution for an hydrodynamic system is derived by considering two
orders of Moffat’s [5] lubrication approximation. An asymptotic solution for
describing three-dimensional motion of the film is derived in [2]. Both papers
subsequently analysed the stability of the steady-state distribution, with the
resulting linearised problem indicating infinitely many neutrally stable har-
monic disturbances. However [2, 4] also found the presence of non-harmonic
solutions that developed singularities in a finite time. This alternative source
of instability, whereby each term of the series was bounded but the series as
a whole diverged, was interpreted as an ‘exploding’ instability. In [2, 4] the
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collapse (explosion) of the film occurred in the azimuthal and axial directions,
respectively.
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Figure 1. Formulation of the problem: liquid film inside a rotating horizontal cylin-
der.

This paper sets out to present a model where both the axial and azimuthal
components of the hydrostatic pressure gradient are taken into account. The
resulting solution will produce infinitely many stable normal modes (with har-
monic dependence on the axial variable and time), along with non-harmonic
disturbances that will collapse in both the axial and azimuthal directions.

2. Formulation of the Problem

2.1. The governing equation

Consider a thin film of incompressible liquid on the inside of a cylinder of
radius R with a horizontal axis. The cylinder is rotating about this axis with
constant angular velocity Ω (see Figure 1). Cylindrical coordinates (r, θ, z)
are used. h, the thickness of the film, depends on the azimuthal angle θ, axial
coordinate z, and time t. The following non-dimensional variables are used:

θ = θ̂, z =
√

ε
ẑ

R
, t = Ωt̂, λ =

λ̂

εR

(

1 −
λ̂

2R

)

,

where g, υ are parameters describing the acceleration due to gravity and

the kinematic viscosity of the fluid, respectively. ε =

√

υΩ

gR
is essentially the

non-dimensional thickness of the film.

The combined effect of the axial and azimuthal components of the hy-
drostatic pressure gradient are examined in this paper. To derive the most
general model, the former is treated as a leading-order effect, whereas the
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latter is treated as a perturbation. The approach to modeling these effects is
based on the lubrication approximation. As a result, the following equation
can be derived:
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= 0. (2.1)

A similar method for the derivation of (2.1) can be found in [2, 4].

2.2. Steady states and disturbances

Let the solution of equation (2.1) be independent of t and z, i.e. λ(θ, z, t) =
λ̄(θ). Then, (2.1) yields

λ̄ − 1
3 λ̄3 cos θ + 1

3ελ̄3 ∂λ̄

∂θ
sin θ = q, (2.2)

where q is a constant of integration (physically, q is the non-dimensional mass
flux). In order to examine the properties of λ̄ for stability, assume that

λ(θ, z, t) = λ̄ (θ) + λ′(θ, z, t), (2.3)

where λ′ represents a small disturbance. Substitute (2.3) into (2.2) and omit
the nonlinear terms, to obtain (primes are omitted in notation)
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= 0. (2.4)

The main difficulty associated with this equation is that the explicit form of
its coefficients is unknown. The only exception is the limit of small flux, q � 1,
in which case (2.2) admits an explicit asymptotic asymptotic solution,

λ̄ = q + 1
3q3 cos θ + O(q5), if q � 1. (2.5)

Substitute (2.5) into (2.4) and assume, for simplicity, that
εq3

∆θ
� q4 (where

∆θ is the characteristic azimuthal scale of the solution). Omit the O(q4) terms
and smaller to obtain
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Equation (2.6) describes the azimuthal (θ) propagation of disturbances and
their diffusion in both θ- and z-directions. Accordingly, the factor

(

1 − q2 cos θ
)

is the propagation speed, whereas − 1
3εq3 sin θ and − 1

3q3 sin θ are the effective
diffusion coefficients in the θ- and z-directions, respectively. Note, in the lower
half of the cylinder (−π < θ < 0), the diffusion is positive, whereas in the
upper half (0 < θ < π), the coefficients are both negative (because of ‘inverse’
gravity).

3. Harmonic Disturbances

In this section, the normal modes (solutions with harmonic dependence on
the axial variable and time) will be examined, i.e.

λ(θ, z, t) = φ(θ) ei(kz−ωt), (3.1)

where ω is the frequency and k is the axial wave number. Substitution of (3.1)
into (2.6) yields

d

dθ

[

(

1 − q2 cos θ
)

φ + ε sin θ
dφ

dθ

]

−
(

iω + κ2 sin θ
)

φ = 0, (3.2)

where ε =
εq3

3
, κ2 =

k2q3

3
.

Equation (3.2) together with the periodicity condition,

φ(θ + 2π) = φ(θ), (3.3)

form an eigenvalue problem, where φ(θ) is the eigenfunction and ω is the
eigenvalue. If Im ω > 0 the film is unstable.

Equations (3.2)–(3.3) can be solved asymptotically, using a WKB-type
method based on the smallness of ε. [3] shows, using this method, all distur-
bances are neutrally stable. This paper will introduce a numerical method to
corroborate the findings of [3].

3.1. Numerical Method

The solution of (3.2)–(3.3) can be represented by its complex Fourier series

φ(θ) =

∞
∑

k=−∞

φkeikθ, (3.4)

where φk are the Fourier coefficients. Substitution of (3.4) into (3.2) together
with routine algebra yields

∞
∑

l=−∞

Ak,lφl = ωφk,
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where

Ak,l = kδk,l +
k
[

ε (k − 1) − q2
]

+ κ2

2
δk−1,l −

k
[

ε (k + 1) + q2
]

+ κ2

2
δk+1,l,

and δk,l is the Kronecker delta. Thus problem (3.2)–(3.3) is reduced to an
eigenvalue problem of an infinite tri-diagonal matrix Ak,l. In practice Ak,l is
truncated at a large but finite size where its eigenvalues are computed using a
suitable numerical algorithm, e.g. MATLAB’s eig function for sparse matrices.

The results obtained through the WKB method from [3] can be compared
to the direct numerical solution of problem (3.2)–(3.3). For all physically rel-
evant values of parameters (ε, q2 ≤ 0.1) the difference between the asymp-
totic and exact solutions is hardly visible. Figure 2(a) shows the results for
ε = q2 = 0.3, in which case the agreement between the two solutions is still
very good. Figure 2(b) shows that the accuracy of the WKB method im-
proves with growing mode number. The third mode is indistinguishable from
the exact solution.
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Figure 2. The dotted line shows the exact numerical solution of (3.2)–(3.3), the
solid line represents the solution achieved using the WKB method in [3] of (a)
the eigenvalues ω, with κ ∈ [0, 5] , ε = q

2 = 0.3 for the first four modes, (b) the
eigenvalues ω, with ε ∈ [0, 1] , κ = 1, q

2 = 0.1 for the first three modes.

4. Exploding Solutions

Despite all the normal modes of (3.2)–(3.3) being stable, equation (2.6) admits
an exploding solution, which develops a singularity in a finite time. Although,
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this type of instability (with a collapse in both the axial and azimuthal direc-
tions) has been described in [3], no actual expression has been presented (see
[3] for the method in yielding this exploding solution). Thus, the exploding
solution has the following form:

λ
(

θ, z, t
)

=
A(t)

√

(

θ − t
)2

+ εz2

e
−

(θ−t)2+εz
2

4W2(t) M
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2
, 0,

(θ − t)
2
+ εz2

2W 2(t)

)

, (4.1)

where M is the WhittakerM-function (see [1]). Function (4.1) describes a nar-
row pulse advancing along the inner surface of the cylinder in a anti-clockwise
direction with width and amplitude given by

W (t) =

√

W 2
0 − 4ε sin2

(

1

2
t

)

, A (t) = A0W
1−α(t), (4.2)

where α is a constant that was introduced in the course of a separation of
variables. It is implied that the pulse’s initial width and amplitude are W0, A0.

(4.1)-(4.2) together show that the evolution of the pulse depends on
whether or not the initial width W0 exceeds a threshold value of 2

√
ε.

• If W0 > 2
√

ε, the solution is smooth at all times. Between t = 0 and t = π,
the pulse is traveling through the upper half of the cylinder, where the
diffusivity is negative. Accordingly, the width of the pulse is decreasing
and the amplitude is growing. At t = π, the pulse enters the region of
positive diffusivity, and by the time it reaches the starting point (t = 2π),
it restores its initial parameters. This cycle repeats itself indefinitely.

• If W0 ≤ 2
√

ε, it follows

W (t) → 0, A (t) → ∞ as t → 2 arcsin

(

W0

2
√

ε

)

.

Thus, if the pulse is sufficiently narrow initially, it blows up due to the
effect of ‘anti-diffusivity’ before it leaves the upper half of the cylinder.
Observe that α determines how quickly the amplitude of the pulse tends
to infinity as W → 0 – accordingly, α is referred to as the explosion rate.

5. Concluding Remarks

This paper firstly presents a model of rimming flows (i.e. equation (2.1)), which
includes both axial and azimuthal components of the pressure gradient. All
solutions with harmonic dependence on the axial variable and time (normal
modes) are found to be neutrally stable to the second order. This result is
verified numerically in Section 3.

However, an additional linear stability analysis yields a system that ad-
mits solutions which develop singularities in a finite time. These solutions are
shown to collapse (explode) in both the axial and azimuthal directions and
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are represented formally by (4.1)–(4.2). [3] conjectures that this exploding
solution describes the early stage of a drop formation. For example, imagine
a short-scale perturbation on the surface of the film. When the rotation of
the cylinder turns the perturbation ‘upside down’, gravity starts increasing
its amplitude and/or shortening its size. Once the perturbation is sufficiently
large and narrow, a drop of fluid should detach itself from the film and fall
down.
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