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Abstract. Dynamics of the interface of the bubble rising in the vertical Hele-
Shaw cell with magnetic liquid under the action of normal field is studied. The
nonlinear system of ODEs describing the interface dynamics of bubble is derived by
the method of conformal mapping. Some useful for numerical calculations properties
of the system of ODEs are described.
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1. Introduction

The free surface flows in Hele-Shaw cells have obtained a great interest re-
cently [2]. This is caused by extremely rich pattern formation phenomena
in these systems. These phenomena obtains new features if one of the liq-
uids is magnetic, when due to self-magnetic field forces intricate labyrinthine
patterns are formed [5, 6, 9]. The problem of the free interface of bubble mov-
ing in the Hele-Show cell was considered in pioneering work [12] by Soffman
and Taylor. Rather efficient approach to the investigation of free interface
dynamics in Hele-Shaw cells is based on method of conformal mapping. By
conformal mapping method the time evolution of the free interface leading to
the formation of the Saffman-Taylor finger [2], finite time interface singularity
formation due to the dynamics of the poles of mapping function [11] and non-
linear noise induced instability of viscous fingers at large capillary numbers
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[1] are studied. Among later developments of the conformal mapping method
we can mention the establishment of the 2D Toda hierarchy describing the
interface evolution in the case of circular Saffman-Taylor instability when the
surface tension is absent [8]. Finger shape selection problem based on exact
time dependent solutions for conformal maps is considered in [7] (see also the
discussion given in [10]).

In this paper the first time the conformal mapping method is developed for
the dynamics of bubbles rising in the vertical Hele-Shaw cell with magnetic
liquid. It allows one to follow in natural way the complex dynamics of the
bubble interface. The interface evolution equation in terms of the conformal
mapping function is obtained and it is shown that the interface dynamics can
be formulated in terms of nonlinear ODEs for the coefficients of the Laurent
series. An efficient numerical algorithm for numerical solution of the system
of ODEs is developed.

2. Model and Mathematical Formulation of the Problem

Magnetic liquid motion surrounding the bubble in the Hele-Shaw cell is de-
scribed by Darcy equation taking into account the gravitational and magnetic
forces [3, 4]:

−∇p − α~v +
2M

h0
∇ϕ0 + ρ~g = 0; div ~v = 0. (2.1)

Here α = 12η/h2
0 is the friction coefficient of the liquid in the Hele-Shaw cell

with thickness h0, ϕ0 is the value of the magnetostatic potential of the liquid
on the boundary of the Hele-Shaw cell:

ϕ0 = −M

∫ ∫

D

[ 1

|~ρ − ~ρ′|
−

1
√

(~ρ − ~ρ′)2 + h2
0

]

dS′, (2.2)

where D is a domain outside of the bubble. The boundary condition for the
problem (2.1) – (2.2) on a bubble interface Σ is given by the Laplace law

p|Σ = p0 − σk, p0 = const .

Here k is the curvature of the bubble interface, σ is coefficient of the sur-
face tension. Evolution of interface in time is given by kinematic boundary
condition for velocity ~v on Σ:

α~n · ~v = ~n · (−∇p +
2M

h0
∇ϕ0 + ρ~g). (2.3)

Here ~n is the normal to the interface. The condition of the incompressibility
of the bubble is given by Sb = πR2, R = const . The problem is completely
formulated when the initial configuration of the bubble interface Σ is specified
at the moment t = 0.

The solution of the problem (2.1) – (2.3) is determined by 3 dimensionless
parameters: the dimensionless thickness of Hele-Shaw cell h, the gravitational
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Bond number Bg and the magnetic Bond number Bm which are defined as
follows

h =
h0

R
, Bg =

ρgR2

σ
, Bm =

2M2h0

σ
. (2.4)

To put equations in dimensionless form the following scales are introduced:
time t is scaled by 12ηR3/(σh2

0) – the characteristic capillary relaxation time
of the bubble in the Hele-Shaw cell, the distances by the radius of bubble
R defined by relation (2.4), and the pressure by a characteristic capillary
pressure σ/R. As a result the problem in dimensionless form reads

−∇p − ~v + Bm∇ϕ0/h2 − Bg ~ex = 0; div ~v = 0, (2.5)

ϕ0 = −

∫ ∫

D

[ 1

|~ρ − ~ρ′|
−

1
√

(~ρ − ~ρ′)2 + h2

]

dS′, (2.6)

p|Σ = p0 − k, Sb = π, (2.7)

~n · ~v|Σ = ~n · (−∇p + Bm∇ϕ0/h2 − Bg~ex)|Σ . (2.8)

3. Conformal Mapping Method

The conformal mapping method for the bubble interface dynamics is intro-
duced as follows. Let us denote the physical plane of bubble motion as plane
of complex variable z. Let the function z = f(w, t) be the conformal map of
the domain outside the unit circle |w| > 1 to the domain outside the bubble.
For uniqueness of the map we require f(∞, t) = ∞, f ′

w(∞, t) = c−1(t) > 0,
where c−1(t) is given function. Representing f(w, t) by the Laurent series in
the domain |w| > 1 we have

z = f(w, t) = c−1(t)w +

∞
∑

k=0

ck(t)w−k . (3.1)

The parametric equation of the bubble interface z = f(eiθ, t) is given as

z = c−1(t)e
iθ +

∞
∑

k=0

ck(t) exp(−ikθ), −π ≤ θ ≤ π. (3.2)

Calculating the area of the bubble according to

Sb =
1

2
Im

∫ π

−π

f(eiθ, t)
d

dθ
f(eiθ, t)dθ = π, (3.3)

we obtain

c2
−1(t) = 1 +

∞
∑

k=1

k|ck(t)|2. (3.4)

Thus a positive function c−1(t) is determined by volume conservation condi-
tion (2.7). Relations (3.2) and (3.4) show that interface dynamics is deter-
mined by a set of time dependent functions cn(t). The set of ODE for these
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functions is derived as follows. From Darcy equation (2.5), when effective pres-
sure p̃ = p−Bm/(h2)ϕ0 and complex potentials for the vectorial fields in their
complex representation are introduced: ~v ∼ F ′(z),∇p̃ ∼ Φ′(z) and ~ex ∼ 1, we
obtain

F ′(z) + Φ′(z) + Bg = 0, z ∈ D. (3.5)

Here F and Φ are analytical functions in the domain D. Using

z = f(w, t); F1(w, t) := F (f(w, t)); Φ1(w, t) := Φ(f(w, t));
dz

dw
= f ′

w(w, t)

the following equation is obtained

F1(w, t) + Φ1(w, t) + Bg f(w, t) = C(t). (3.6)

Now we exclude F1 and Φ1 from (3.6) at w = eiθ using (2.5) – (2.8), and
several conversions with complex functions. Then we obtain the nonlinear
equation for the function g(eiθ, t) := Bg t + f(eiθ, t):

∂

∂t
g(eiθ, t) =

∂

∂θ
g(eiθ, t)

[

H[L(θ, t)] − iL(θ, t)
]

, (3.7)

where H is Hilbert transformation

H[f(θ)] = v.p.
1

2π

∫ π

−π

f(τ) cot
τ − θ

2
dτ, (3.8)

L(θ, t) =
2Bg c−1(t) cos θ + H[µ′(θ)]

|c−1(t) −
∞
∑

k=1

kck(t) exp[−i(k + 1)θ]|2
, (3.9)

µ(θ, t) = k(θ, t) + Bgϕ(θ, t)/h2; ϕ − ϕ0 = const . (3.10)

4. Reduction to the Cauchy Problem for ODE

To simplify notations we introduce ck(t) = ck; c′k(t) = ċk; g(eiθ, t) = g(eiθ),
µ(θ, t) = µ(θ) and

Q(θ) :=

∞
∑

k=1

kck exp [−i(k + 1)θ]; (4.1)

R(θ, τ) :=
g(eiθ) − g(eiτ )

eiθ − eiτ
; R(τ, τ) = c−1 − Q(τ); (4.2)

T (θ, τ) :=
[c−1 − Q(τ)] exp (i(τ − θ)/2)

R(θ, τ)
. (4.3)

From equalities |g(eiθ) − g(eiτ )| = 2|R(θ, τ)|| sin ((θ − τ)/2)|;
eiτ |eiθ − eiτ |/(eiθ − eiτ ) = i exp [i(τ − θ)/2]sgn(sin ((τ − θ)/2)) after some
transformations we obtain
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ϕ(θ) = 2h

∫ π

−π

P (θ, τ)Im[T(θ, τ)]dτ, (4.4)

where the real function P is given as follows

P (θ, τ) =
|R(θ, τ)|sgn(sin τ−θ

2 )

2| sin τ−θ
2 ||R(θ, τ)| + h +

√

4 sin2 τ−θ
2 |R(θ, τ)|2 + h2

. (4.5)

As a result for effective capillary pressure µ(θ) = k(θ) + Bm/(h2) ϕ(θ) we
obtain

µ(θ) =
1 − Im[Q′(θ)/(c−1 − Q(θ))]

|c−1 − Q(θ)|
+

2Bm

h

∫ π

−π

P (θ, τ)Im[T(θ, τ)]dτ. (4.6)

Let us introduce real coefficients

âk =
1

π

∫ π

−π

µ(θ) cos kθdθ, b̂k =
1

π

∫ π

−π

sin kθµ(θ)dθ, k = 0, 1, . . . . (4.7)

Then the real function

L(θ) =
2Bg c−1 cos θ −

∑

∞

k=1 k(âk cos kθ + b̂k sin kθ)

|c−1 − Q(θ)|2
, (4.8)

defined by (3.9) and (4.8) has complex Fourier coefficients

Aj =
1

π

∫ π

−π

L(θ) exp(ijθ)dθ, j = 0, 1, 2, . . . (4.9)

The equation (3.7) reads

ċ−1+

∞
∑

k=0

ċke−i(k+1)θ =
(

A0/2+

∞
∑

j=1

Aje
−ijθ

)(

c−1−

∞
∑

k=1

kcke−i(k+1)θ
)

. (4.10)

Comparing the coefficients at exp (−imθ) for different m gives the system of
ODEs:

ċ0 = c−1A1; ċk = c−1Ak+1 − A0kck/2−

k−1
∑

j=1

Aj(k − j)ck−j , k ≥ 1, (4.11)

where c2
−1 = 1+

∑

∞

k=1 k|ck|
2. Aj due to (4.1)–(4.9) depend on ck only. Initial

values ck(0) are determined by shape of a bubble at t = 0:

z = [c−1(0) +
∞
∑

k=0

ck(0) exp (−i(k + 1)θ)] exp (iθ)

and must be to added to (4.11) for uniqueness of the solution.
For functions Aj , j = 0, 1, . . . , which depend on ck, k ≥ 0, and make up

the ODEs (4.11) another useful representation may be obtained.
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Proposition 1. Let us define the Fourier coefficients

ak =
1

π

∫ π

−π

cos kτdτ

|c−1 − Q(τ)|2
; bk =

1

π

∫ π

−π

sin kτdτ

|c−1 − Q(τ)|2
, k = 0, 1, . . . , (4.12)

which depend on cj . Then functions Bj(s) :=
d

ds
H

[ eijs

|c−1 − Q(s)|2

]

have the

following representation

Bj(s) = −
exp(ijs)

2

{

a0j +

∞
∑

k=1

[(ak − ibk)(k + j)eiks + (ak + ibk)|j − k|e−iks]
}

,

(4.13)
and Aj = Bg c−1Ij + 1

π

∫ π

−π
µ(s)Bj(s) ds, where I0 = 2a1; Ij = aj−1 + ibj−1 +

aj+1 + ibj+1, if j = 1, 2, . . . , and µ(s) is defined by (4.6).

Proposition 2. Let be Dj(s) = H
[ eijs

|c−1 − Q(s)|2

]

=
∫

Bj(s) ds. Then

Aj = Bgc−1Ij −
1

π

∫ π

−π

Dj(s)µ
′(s)ds. (4.14)
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