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Abstract. We present a new method of constructing a smooth function of many
variables that interpolates data values at arbitrary distributed points. Shepard’s
method for scattered data interpolation and its quadratic modifications have the
advantage of an easy generalization to more than two independent variables. We
describe a modified Shepard’s method that, without losing the advantage, is self-
adjusting to trends of different scales in interpolation data. In the case of interpola-
tion to a uniform mesh (from irregular interpolation nodes) computational complex-
ity of the method is shown to be logarithmic with respect to the overall number of
mesh point, independently on the space dimension and the number of interpolation
nodes. Accuracy test results for three independent variables are presented.
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1. INTRODUCTION

The scattered data fitting problem is encountered frequently in applied math-
ematics. In this paper we address the problem of constructing a function
u ∈ C1(Rm) such that, given a set of scattered nodes xi ∈ R

m with associ-
ated values ui, u(xi) = ui for i = 1, . . . , n.

A quadratic modification of Shepard’s method [6] was introduced by
Franke and Nielson [2], its further modification was proposed by Renka [5].
It was also shown [5] that Quadratic Shepard is more accurate than triangle-
based methods. The primary advantage of Quadratic Shepard is in fitting
with a function of three and more variables. However, Quadratic Shepard is
a local method, in which an interpolated value is not influenced by all of the
data. Therefore, quadratic modifications of Shepard’s method require some
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artificial setup parameters like a radius of influence or a number of nearest
nodes, but there is no algorithm to assign these parameters optimally.

In Section 2 we describe an iterative modification of Shepard’s method,
referred to further as Iterative Shepard, that is free from artificial setup para-
meters. Accuracy of the method is proved by test results presented in Section
3. In Section 4 we introduce an efficient numerical implementation of Itera-
tive Shepard in the particular case of interpolation to a uniform mesh (from
arbitrary distributed nodes). Section 5 concludes the paper.

Iterations of the method, which we are going to describe, correspond to
successive scaling. Therefore, Iterative Shepard is self-adjusting to trends of
different scales in interpolation data. In contrast to the multiscale methods
presented in [1] and [3], Iterative Shepard doesn’t perform successive tessel-
lations of an interpolation domain and compute approximating splines on
these tessellations. Thus we preserve the simplicity of the original Shepard’s
method. Iterative Shepard is a further development of our recent paper [4].

2. Interpolation Algorithm

Interpolating function for given values ui at nodes xi we define by
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the weight function f is continuously differentiable,

f(x) ≥ 0 ∀x, f(0) > 0, f(x) = 0 if ‖x‖ > 1, (2.3)

and the scale factor τk > 0 decreases from a value τ0 (that is the first setup
parameter of the method) down to

τK < r ≡ min
i6=j

‖xi − xj‖. (2.4)

From (2.4) and (2.3) it is easily seen that u(x) satisfies the interpolation
conditions. In contrast to other modifications of Shepard’s method, current
point x does not appear in the denominators of the relative weights of nodes in
(2.1). Thus, Iterative Shepard can produce piecewise polynomial interpolation.
In the case of one independent variable (m = 1) the following weight function
may be used

f(x) =

{

5(1 − |x|)4 − 4(1 − |x|)5, |x| < 1,

0, |x| ≥ 1.
(2.5)
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In the case of three variables (m = 3) it corresponds to

f(x, y, z) = f(x)f(y)f(z). (2.6)

This choice of the weight function makes the interpolant (2.1) doubly conti-
nuously differentiable and its third partial derivatives have discontinuities at
the interpolation nodes only.

The described algorithm performs a global interpolation if

τ0 > R ≡ supx∈D max
0≤j≤n

‖x − xj‖, (2.7)

where D is the interpolation domain. From (2.2) it can be shown that

n
∑

j=1

u
(k)
j = 0, k > 0.

Therefore if τ0 � R then in the first step of the algorithm (k = 0) we merely
subtract the average from the given interpolation values. Further increasing
of the setup parameter makes the dependence of the interpolant on τ0 very
weak, since f

(

(x − xj)
/

τk

)

comes to f(0), for all j and x, if τk → ∞. If we
assign τ0 according to the largest distance to the nearest node

τ0 > R1 ≡ max

{

max
0≤i≤n

min
0≤j≤n

‖xi − xj‖, supx∈D min
0≤j≤n

‖x − xj‖

}

, (2.8)

then Iterative Shepard becomes a local method. This makes it less accurate
but faster (R1 < R). The algorithm is defined completely by a choice of the
sequence {τk} of scale factors. If we define

τk = τ0 γk, 0 < γ < 1, (2.9)

then the only one additional setup parameter γ appears, which determines the
rate of scaling. It will be shown in the next section that the method becomes
more accurate (interpolant becomes more smooth) while γ is increasing. How-
ever for sparse interpolation nodes smaller values of γ may be used in order
to decrease the computation time.

Thus Iterative Shepard has two setup parameters, which are not artificial.
A reasonable choice of the values of τ0 and γ can be done based on the dis-
tribution of the nodes and an assumption of smoothness of the function to be
interpolated. As a rule, if τ0 is assigned from (2.7) or (2.8) and γ is varied from
0.6 to 0.95, the behaviour of the interpolation function is not changed signif-
icantly. This happens because the idea of the multiscale analysis is applied.
Since at first iterations large-scale (low-frequency) trends in interpolation data
are accounted for and more high-frequency components are residuals for fur-
ther steps, the method is self-adjusting to data at any reasonable values of
the setup parameters.
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3. Test Results

Here we compare interpolation errors of the proposed method with errors of
Quadratic Shepard in the test suggested by Renka [5]. Following Renka, a
uniform random-number generator was used to produce 216 nodes in the unit
cube, and the set of interpolation points was taken to be the 20-by-20-by-20
uniform mesh in the unit cube. Renka suggested six functions, which were used
to compute interpolation values at random nodes and interpolation errors at
the mesh points. We have rejected one of the functions (the sixth) because its
first derivatives have singularities just near each vertex of the unit cube and
because a global method of smooth interpolation should have greater errors
than a local method in this case.

Table 1 displays interpolation errors of Iterative Shepard (referred as IS)
in comparison with Quadratic Shepard (referred as QS). QS errors were taken
from the third table in paper [5]. We averaged IS errors over 100 random
distributions of interpolation nodes. The weight function was taken as defined
by (2.5) and (2.6), τ0 = 4; the results are presented for three values of γ (0.9,
0.95, 0.99). The columns of the table correspond to Renka’s functions F1,..,F5.
For convenience, the quotients of IS and QS errors are shown and they are
highlighted at γ = 0.99.

Table 1. Interpolation Errors for a Trivariate 216-Node Test.

Function F1 F2 F3 F4 F5

Method Mean interpolation errors

QS .01077 1.00 .00662 1.00 .00614 1.00 .00208 1.00 .00247 1.00
IS(0.9) .01094 1.01 .00763 1.15 .01120 1.82 .00374 1.80 .00284 1.15
IS(0.95) .00960 0.90 .00712 1.07 .00843 1.37 .00190 0.91 .00256 1.04
IS(0.99) .00839 0.78 .00723 1.09 .00547 0.89 .00101 0.48 .00198 0.80

Method Maximum interpolation errors
QS .2085 1.00 .1476 1.00 .1193 1.00 .0308 1.00 .0463 1.00
IS(0.9) .1671 0.80 .1264 0.86 .2091 1.75 .0369 1.20 .0608 1.31
IS(0.95) .1645 0.79 .1184 0.80 .1796 1.51 .0201 0.65 .0459 0.99
IS(0.99) .1456 0.70 .1159 0.78 .1196 1.00 .0222 0.72 .0316 0.68

The presented results show that IS accuracy becomes better than QS accu-
racy while γ is increasing. It should be noted that, although the test functions
were chosen by Renka to exhibit a variety of behaviour, they are all smooth
well-behaved functions and therefore fail to reflect the erratic nature of many
data sets that arise in practice. Data sets encountered in practice may also
exhibit much more variation in sparseness of the nodal distribution than node
sets used here. Moreover, for very sparse nodes the uncertainty of interpolation
(extrapolation) increases and the conception of accuracy becomes meaning-
less. Our practice of using Iterative Shepard in geophysical predictions made
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us sure that γ ≈ 0.75 gives the most credible results, in comparison with other
state-of-the-art methods.

4. Efficient Implementation

Frequently interpolation should be performed from scattered nodes to a uni-
form mesh. Computation time becomes an important criterion in cases of
large meshes and large interpolation data sets. Here we describe an efficient
numerical implementation arising from a special choice of the weight function
of Iterative Shepard.

For a mesh function a = {ai, i = 1, . . . , r}, given on a one-dimensional
uniform mesh, we define the following operator sτ such as sτ [a] = b if

(

1 + 2τ2
)

bi − τ2 (bi−1 + bi+1) = ai, i = 1, . . . , r, b0 = b1, br+1 = br.
(4.1)

It can be shown that operator (4.1) is a difference approximation of the con-
volution with the filter function

(2τ)−1exp (−|x|/τ).

Thus we obtain a scalable filter: its computation time does not depend on
the scale factor τ . Operator s2

τ , which denotes double using of scheme (4.1),
approximates the continuously differentiable filter

(4τ)−1exp (−|x|/τ)(1 + |x|/τ).

For multi-dimensional meshes we note that sτ implies using finite-difference
scheme (4.1) in each independent variable, when all remaining variables are
fixed. Hence in m variables s2

τ approximates the convolution with the function

fτ (x) = (4τ)−mexp

(
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, (4.2)

where x1, . . . , xm are coordinates of x.
The described algorithm for computing the convolution (multivariate and

scalable) with function (4.2) can be used in Iterative Shepard as a special
choice of the weight function

f(x) = exp

(

−

m
∑

l=1

|xl|

)

m
∏

l=1

(1 + |xl|) . (4.3)

It should be noted that function (4.3) does not meet the last of conditions
(2.3). In this case the interpolant of Iterative Shepard is represented by an
infinite series. Theorems of its convergence and differentiability can be proved
similarly to the same theorems of our another method [4].

Finally, we rewrite Iterative Shepard for a uniform mesh in the form
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where interpolant u(x) is a mesh function, Sk = s2
τ at τ = τk, scale factor

sequence is defined by (2.9), δ(x) = 0 if x 6= 0, δ(0) = 1, in assumption
that each interpolation node coincides with some mesh point (fine mesh).

While applying operator Sk at the uniform mesh in the m-dimensional
cube with N mesh points, system (4.2) is solved 2N 1−1/m times. Therefore
Sk requires 10mN multiplications. If the scale factor is decreased from the
cube edge down to the mesh step, then we must perform K = dlog1/γ N1/me
iterations. Note that the denominators in (4.4) are computed at interpola-
tion nodes only. Nevertheless, if they are computed similarly (not directly by
summing over nodes), the total multiplication count is approximately

20N log1/γ N ≈ 20γ(1− γ)−1N ln N.

Remarkably, the computation time does not depend on n or m. The storage
requirement is that a copy of the mesh is stored.

5. Concluding Remarks

The accuracy of our method was shown in a trivariate test. An efficient nu-
merical implementation for interpolation to a uniform mesh was constructed,
the computation time of which is O(N ln N), where N is an overall number of
mesh points, regardless of the space dimension and of the number of interpo-
lation nodes. Our multiscale method, by its nature, adjusts itself to data. The
method described here has an obvious generalization to a smoothing method,
which is more appropriate when the data values are inaccurate. It is only
necessary to stop iterations before the interpolation conditions are satisfied.
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