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Abstract. Flows behind obstacles (such as islands) are shallow if the transverse
scale of the flow is much larger than water depth. Experimental and theoretical
analysis indicates that the development of shallow wakes is different from the wakes
in deep water. Several authors have used the linear stability theory in order to
understand when shallow flows become unstable. Two-dimensional depth-averaged
Saint-Venant equations are usually used for the analysis. One of the main assump-
tions in shallow water theory is the independence of the velocity distribution on
the vertical coordinate. In many cases, however, this assumption may not be valid.
This paper presents an attempt to evaluate the influence of this assumption on the
results of linear stability analysis of shallow wake flows with bottom friction. Mo-
mentum correction coefficients β1 and β2 in the x and y directions are used in order
to take into account the non-uniformity of the velocity distribution in the vertical
direction. It is shown that the stability boundary is quite sensitive to the variation
of the parameters β1 and β2.
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1. Introduction

Shallow wake flows are flows behind obstacles (such as islands) with the trans-
verse scale of the flow being much larger than the vertical scale (water depth).
Experiments show that development of wakes in shallow water significantly
differs from the development of wakes in deep water. This is linked to the fact
that limited water depth has a strong influence on the development of flow
instabilities. Bottom friction acts as a suppression factor for the growth of

1 This work has been partly supported by the European Social Fund within the
National Programme “Support for the carrying out doctoral study programs and
post-doctoral researches” project “Support for the development of doctoral stud-
ies at Riga Technical University” and the Latvian Council of Science under the
Project No. 04.1239.
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transverse perturbations. Moreover, evolution of three-dimensional instabili-
ties is prevented due to small vertical scale.

Vortex structures observed in shallow water in many cases may resemble
flow patterns in deep water, but in shallow water case the corresponding
flow patterns can be observed at much larger values of the Reynolds number.
For example, photograph Nr. 173 by Van Dyke [2] shows formation of eddies
organized into a vortex street behind an obstacle in shallow water although
the Reynolds number for this case is 107 [2]. Note that vortex street pattern
in unbounded flows is limited to significantly smaller Reynolds numbers.

Several authors analyzed the stability of shallow flows both experimentally
and theoretically [1, 3, 4, 8]. One of the main assumptions which is usually
made in shallow water theory in order to facilitate the analysis is the inde-
pendence of the flow characteristics on the vertical coordinate since shallow
water equations are depth-averaged equations. There are many cases, how-
ever, where this assumption may not be valid. Changes in flow geometry, flow
regimes or roughness of the bottom boundary can lead to large deviations
from the above-mentioned assumption [9, 10]. Momentum correction coeffi-
cients are applied by several authors [9, 10] in order to take into account the
non-uniformity of the velocity distribution. In particular, momentum correc-
tion coefficients are used in [6] for linear stability analysis of shallow mixing
layers.

The present paper makes an attempt to evaluate the importance of the
non-uniformity of the velocity distribution on the stability analysis of shal-
low wake flows. Momentum correction coefficients are used in this paper to
calculate the stability boundary of the flow for the following wake profile

U(y) = 1 +
2R

1 −R

1

cosh2(αy)
.

2. Problem Formulation

The governing equations for shallow flow under the rigid-lid assumption
are [10]:
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where x and y are the spatial coordinates, t is the time, u and v are the
depth-averaged velocity components in the x and y directions respectively, h
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is water depth, cf is the friction coefficient defined by the equation [5]:

1
√
cf

= −4 log(
1.25

4Re
√
cf

),

where Re is the Reynolds number.

Shear stress at the boundary is modeled by the Chezy formula

τwx =
1

2
cfρu

√

u2 + v2, τwy =
1

2
cfρv

√

u2 + v2,

where ρ is density, τwx and τwy are wall shear stresses along the x and y
directions respectively.

The coefficients β1, β2, and β3 in equations (2.1) – (2.3) are the momentum
correction coefficients which are introduced in order to take into account non-
uniformity of velocity distribution in the vertical direction. The momentum
correction coefficients are defined as follows:

β1 =
1

hu2

∫ z2

z1

ũ2 dz, β2 =
1

huv

∫ z2

z1

ũṽ dz, β3 =
1

hv2

∫ z2

z1

ṽ2 dz,

where ũ and ṽ are the velocity components in the x and y directions respec-
tively. It is assumed that the coefficients β1, β2 and β3 are independent on
the spatial coordinates x and y.

Introducing the stream function ψ(x, y, t) defined by the relations

u =
∂ψ

∂y
, v =

∂ψ

∂x

and eliminating the pressure p we rewrite the equations (2.1)-(2.3) in the
following form:

(∆ψ)t + (2β1 − β2)(ψyψxy)y − β2(ψxψyy)y + (β2 − 1)(ψxψxy)x

+ β2(ψxxψy)x − (2β3 − 1)(ψxψxx)y +
cf
2h
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ψ2
x + ψ2

y

+
cf

2h
√

ψ2
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(ψ2
yψyy + 2ψxψyψxy + ψ2

xψxx) = 0, (2.4)

where ∆ is the Laplacian in two dimensions and the subscripts indicate the
derivatives with respect to the variables x and y.

Suppose that the base flow

U = (U(y), 0) (2.5)

is perturbed and the perturbed solution to the equation (2.4) is assumed to
be of the form

ψ = ψ0 + ǫψ1 + ... (2.6)
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where ǫ is a small parameter and ψ0y = U . Substituting (2.5) and (2.6) into
(2.4) and linearizing the resulting equation in the neighborhood of the base
flow (2.5) we obtain

ψ1xxt + ψ1yyt + (2β1 − β2)(Uyψ1xy + Uψ1xyy) − β2(Uyψ1xy

+ Uyyψ1x) + β2Uψ1xxx +
cf
2h

(Uψ1xx + 2Uyψ1y + 2Uψ1yy) = 0. (2.7)

According to the method of normal modes we seek the perturbed component
ψ1 of the stream function in the form

ψ1(x, y, t) = φ1(y)e
ik(x−ct) + c.c. (2.8)

where k is a wavenumber and c = cr+ici is a complex eigenvalue, ”c.c.” means
”complex conjugate”. Substituting (2.8) into (2.7) we obtain the linearized
stability equation (the modified Rayleigh equation) in the form:

φ′′1
[

(2β1 − β2)U − c+
cf
ikh

U
]

+ Uy(2β1 − 2β2

+
cf
ikh

)φ′1 + (k2c− β2Uyy − k2β2U −
cf
2ih

kU)φ1 = 0 (2.9)

with the boundary conditions

φ1(±∞) = 0. (2.10)

3. Solution Method

It is known that for unbounded flows the spectrum consists of both a discrete
an a continuous part [7]. As discussed in [7], for practical and computational
purposes it is often possible to use simpler formulation where a discretized
approximation of the continuous spectrum is used. Therefore only a discrete
spectrum is analyzed in the present paper.

Using the substitution

x =
2

π
arctan(y), y ∈ (−∞; +∞), x ∈ [−1; 1],

we seek the solution φ(x) of the modified Rayleigh equation in the form:

φ1(x) =

N−1
∑

k=0

ak(1 − x2)Tk(x), (3.1)

where ak are unknown constants, and Tk(x) is an n-order Chebyshev polyno-
mial that has the form Tk(x) = cos(k ∗ arccos(x)). The multiplier (1 − x2) is
used to satisfy the boundary conditions (2.10) at x = ±1. Using the colloca-
tion method and choosing the points xj = cos(πj/(N + 1)) as the collocation
points we obtain the generalized eigenvalue problem of the form
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(A− λB)a = 0, (3.2)

where A and B are two complex-valued matrices and a = (a0a1...aN−1)
T .

Solving the generalized eigenvalue problem (3.2), for given cf and k we
obtain a set of eigenvalues cm. The imaginary parts cim of eigenvalues cm =
crm + icim determine linear stability of the base flow. The flow is said to be
linearly stable if the imaginary parts of all cm are negative. If the imaginary
part of the eigenvalue cm of at least one mode is positive then a perturbation
grows exponentially with time and the flow is said to be linearly unstable.

Calculations show that for sufficiently large values of the friction coefficient
cf all eigenvalues have negative imaginary parts (cim < 0), so the flow is stable.
By decreasing cf for given k it is possible to reach the point where at least
one cim becomes positive and the flow loses stability. The bisection method
enables us to find the value of friction coefficient cf for which at least one cim
is close to zero, while all other cim are negative. This point lies on the ”border”
between the stability and the instability region of the flow. By repeating the
process for different values of the wavenumber k we are able to build a neutral
stability curve that is defined as a set of points in the (k, cf )-plane for which
one cm has the imaginary part equal to zero, while imaginary parts of all
other cm are negative. The neutral stability curve represents the boundary
separating the stability domain (above the curve) from the instability domain

(below the curve). The critical value, c
(c)
f of the parameter cf is defined as the

coordinate of the highest point of the curve, or c
(c)
f = maxk(cf (k)).

4. Results and Discussion

This paper presents an attempt to evaluate the influence of momentum correc-

tion coefficients on the value of the c
(c)
f parameter. The influence is evaluated

by solving problems (2.9) – (2.10) for different values of momentum correction

coefficients β1 and β2, and comparing the critical values, c
(c)
f , of the parameter

cf . The linear stability results are presented for the following wake profile (see
[1] for the definition of R and α):

U(y) = 1 +
2R

1 −R

1

cosh2(αy)
.

The values of c
(c)
f have been calculated for the following values of the

parameters
β1 = 1.00, 1.05, 1.10, β2 = 1.00, 1.05, 1.10.

The value of R is fixed at R = −0.5.
Figure 1 presents results of the comparison of the c

(c)
f parameter calculated

for different values of momentum correction coefficients β1 and β2. The results

are compared to the values of c
(c)
f calculated for β1=1.00 and β2=1.00 that

corresponds to the case when the velocity non-uniformity across the vertical
coordinate is not taken into account. As it can be seen, for some combinations
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Figure 1. The percentage difference ∆ between the values of the c
(c)
f for depth-

averaged equations (β1 = 1, β2 = 1) and equations with correction factors (β1 > 1,
β2 > 1).

Figure 2. The real (a) and imaginary (b) parts of an eigenfunction obtained at
β1 = 1, β2 = 1 and R = −0.9.

of the values of β1 and β2 the relative error can reach 10 %. The increase of β1

leads to growth of c
(c)
f , so the flow becomes more unstable. The β2 coefficient

has, in turn, stabilizing effect on the flow, but its influence diminishes with
the growth of β1. The real and imaginary parts of the eigenfunction, φ(x) =
φr(x) + iφi(x), are shown in Fig. 2 for R = −0.9 and β1 = β2 = 1.00.

Unfortunately, the values of coefficients β1 and β2 for real island wakes are

not known. However as the error in determining the c
(c)
f parameter may grow

with increased values of β1 (the stability boundary can be underestimated
with increase of β1) it might be important to know the values of β1 and β2

for the analyzed shallow water flows.
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