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Abstract. A priori parameter explicit bounds on the derivatives of the solution of
a two parameter singularly perturbed elliptic problem in two space dimensions are
presented. These bounds are used to establish parameter uniform error bounds for
a numerical method consisting of upwinding on a tensor product of two piecewise
uniform meshes.
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1. Statement of Problem

Consider the following class of singularly perturbed elliptic problems posed
on the unit square Ω = (0, 1)2,

Lε,µu = ε(uxx + uyy) + µ(a1ux + a2uy) − bu = f in Ω, (1.1a)

u|ΓB
= s1(x), u|ΓT

= s2(x), u|ΓL
= q1(y), u|ΓR

= q2(y), (1.1b)

s1(0) = q1(0), s2(0) = q1(1), s1(1) = q2(0), s2(1) = q2(1), (1.1c)

a1(x, y) ≥ α1 > 0, a2(x, y) ≥ α2 > 0, b(x, y) ≥ 2β > 0, (1.1d)

where ΓB , ΓT , ΓL and ΓR are the edges of the boundary ∂Ω defined by
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ΓB = {(x, 0)|0 ≤ x ≤ 1}, ΓT = {(x, 1)|0 ≤ x ≤ 1},

ΓL = {(0, y)|0 ≤ y ≤ 1}, ΓR = {(1, y)|0 ≤ y ≤ 1}.

Throughout this paper, we assume sufficient regularity and compatibility on
the data so that the solution and its components are sufficiently smooth for
the following analysis to be valid. With respect to regularity assume that
a1, a2, b, f ∈ Cn,α(D), s1, s2, q1, q2 ∈ Cm(J), where D, J are open sets such
that Ω ⊂ D, [0, 1] ⊂ J and n, m are sufficiently large for our analysis. In this
paper, the norm ‖v‖R = max~x∈R |v(~x)| is the maximum pointwise norm.

Lemma 1. The solution u of (1.1), satisfies the following bounds

||u|| ≤ ||s||ΓB∪ΓT
+ ||q||ΓL∪ΓR

+
1

β
||f ||

and for 1 ≤ k + m ≤ 3,
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where C depends on the coefficients a1, a2, b , the boundary data s1, s2, q1, q2,

the inhomogeneous term f and their derivatives.

Note that the differential equation (1.1a) contains two singular perturbation
parameters 0 < ε ≤ ε0 = O(1) and 0 ≤ µ ≤ 1. The analysis for this two-
parameter problem naturally splits into two cases, µ2 ≤ γε

α
and µ2 ≥ γε

α
. In

the case of µ2 ≤ γε
α

, the analysis is similar to that in the case of µ = 0 and
boundary layers of width O(

√
ε) appear in the neighbourhood of all four edges.

For the case of µ2 ≥ γε
α

the analysis is more intricate and boundary layers
of width O( ε

µ
) appear in the neighbourhood of the edges x = 0, y = 0 and

boundary layers of width O(µ) appear in the neighbourhood of x = 1, y = 1.

In this paper, we confine the discussion to the case of µ2 ≤ γε
α

and through-
out we assume that

µ2 ≤ γε

α
, γ = min

{

b

2a1
,

b

2a2

}

. (1.1e)

2. Regular Component

In order to obtain more informative parameter explicit error bounds on the
derivatives of the solution of (1.1), the solution is decomposed into a sum
of regular and layer components. The extension idea from [3] is used to de-
fine the regular solution, which avoids imposing overly artificial compatibility
conditions. We show that there exists a function v such that Lε,µv = f and
when its boundary conditions are chosen appropriately, the function v and
its derivatives up to second order are bounded independently of the small
parameters.
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Define the zero order differential operator L0 as follows

L0z = −bz.

Consider the extended domain Ω∗ = (−d, 1 + d) × (−d, 1 + d) ⊃ Ω, d > 0.

The extended differential operators L∗

ε,µ and L∗

0 coincide with the operators
Lε,µ and L0 respectively on Ω. We also define smooth extensions a∗

1, a∗

2, b∗

and f∗ of the functions a1, a2, b and f to Ω∗.

Consider the differential equation L∗

ε,µv∗ = f∗ on Ω∗ and decompose v∗

as follows
v∗(x, y) = v∗

0(x, y) +
√

εv∗1(x, y) + εv∗

2(x, y),

where

L∗

0v
∗

0 = f∗,
√

εL∗

0v
∗

1 = (L∗

0 − L∗

ε,µ)v∗0 ,

εL∗

ε,µv∗2 =
√

ε(L∗

0 − L∗

ε,µ)v∗1 , v∗2 |∂Ω∗ = 0.

Note that v∗

0 and v∗1 satisfy zero order differential equations and hence there
are no issues of compatibility. The term v∗

2 is the solution of an elliptic problem
on the extended domain Ω∗. The extensions are taken so that the function
g∗ ≡ (L∗

0 − L∗

ε,µ)v∗1 is zero at the four corners of the extended domain and

g∗ ∈ C1,α(Ω̄∗). In this way the term v2 ∈ C3,α(Ω̄∗) is sufficiently regular for
our purposes [2].

Define the regular component v to be the solution of the elliptic problem

{

Lε,µv = f, (x, y) ∈ Ω,

v = v∗, (x, y) ∈ ∂Ω.

Assuming sufficient smoothness of the coefficients, we can establish the fol-
lowing bounds on the first three derivatives of the regular component v
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)

, 0 ≤ k + m ≤ 3, if µ2 ≤ γε

α
.

3. Layer Components

Associated with the left edge ΓL, we define a boundary layer function wL.
Consider the extended domain Ω∗∗ = (0, 1) × (−d, 1 + d), 0.5 > d > 0. We
define w∗

L to be the solution of















L∗∗

ε,µw∗

L = 0, (x, y) ∈ Ω∗∗,

w∗

L|ΓL
= u − v, w∗

L(1, y) = 0, y ∈ [−d, 1 + d],

w∗

L(x,−d) = w∗

L(x, 1 + d) = 0, x ∈ [0, 1].

The boundary function (u− v)(0, y) is extended so that (u− v)∗(0, y) = 0 for
y < −d

2 and y > 1 + d
2 . By the standard comparison principle, it follows that
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|w∗

L(x, y)| ≤ Ce−
√

γα
ε

x, (x, y) ∈ Ω
∗∗

.

Note that the crude derivative bounds given in Lemma 1 also apply in the
case when a1(x, y) ≥ 0, a2(x, y) ≥ 0 and hence they are applicable in the case
of w∗

L, if the extensions are such that a∗

1 ≥ 0, a∗

2 ≥ 0, b∗ > 0 . In the direction
orthogonal to the layer we sharpen these bounds. We first obtain a bound on
w∗

L to reflect the fact that it is zero on the edges Γ ∗∗

T and Γ ∗∗

B . The coefficient
a2 is extended to the domain Ω∗∗ so that

|a∗

2|Ω∗∗ ≤ C1‖a2‖Ω(d + y)(1 + d − y).

Assuming that µ is sufficiently small, we get that

|w∗

L(x, y)| ≤ C(d + y)(1 + d − y), (x, y) ∈ Ω
∗∗

. (3.1)

From the above bound on |w∗

L(x, y)| and the fact that w∗

L(x,−d) = w∗

L(x, 1 +
d) = 0, we obtain
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Differentiate the equation L∗∗

ε,µw∗

L = 0 with respect to y to obtain

L∗∗

ε,µ

∂w∗

L

∂y
= −µ

∂a∗

1

∂y

∂w∗

L

∂x
− µ

∂a∗

2

∂y

∂w∗

L

∂y
+

∂b∗

∂y
w∗

L = f̃ .

Using these bounds on the extended domain and µ2 ≤ γε
α

, we have ||f̃ || ≤ C

and therefore
∥
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∥
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L
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≤ C.

This argument can be extended to produce the higher derivative bounds
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L
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≤ C(1 +
√

ε
1−i

), i = 2, 3.

Define the boundary layer function wL by

Lε,µwL = 0, (x, y) ∈ Ω, wL|ΓL
= u − v, wL|ΓR

= 0, wL|ΓT ∪ΓB
= w∗

L.

Define the boundary layer functions associated with the other three edges wT ,
wR and wB analogously.

Associated with the corner ΓLB = ΓL ∩ ΓB define a corner layer function
wLB such that















Lε,µwLB = 0 (x, y) ∈ Ω,

wLB = −wB , (x, y) ∈ ΓL, wLB = −wL, (x, y) ∈ ΓB ,

wLB = 0, (x, y) ∈ ΓR, wLB = 0, (x, y) ∈ ΓT .
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Note at the corner (0, 0), wL(x, 0) is compatible with wL(0, y) = (u− v)(0, y)
which is compatible with (u− v)(x, 0) = wB(x, 0) which in turn is compatible
with wB(0, y). Hence wL(x, 0) is compatible with wB(0, y) at (0, 0).

By using the comparison principle and the obvious barrier function, the
following bound on wLB holds

|wLB(x, y)| ≤ Ce−
√

γα
ε

xe−
√

γα
ε

y.

Analogous bounds hold for the three other corners. In summary we state the
main result of this paper:

Theorem 1. When µ2 ≤ γε
α

, the solution u of (1.1) can be decomposed into

the following sum of components

u = v + wL + wR + wT + wB + wLB + wLT + wRB + wRT ,

where Lε,µv = f , and the layer and corner layer functions are each solutions of

the homogeneous equation Lε,µw = 0. Boundary conditions for these functions

can be specified so that the bounds on the components and their derivatives

given below hold:
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For all the layer components, we also have that
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4. Numerical Method

Consider the following upwind finite difference scheme

LN,MU(xi, yj) = εδ2
xU + εδ2

yU + µa1D
+
x U + µa2D

+
y U − bU = f,

where D+ is the forward difference operator and δ2 is the standard second
order centered difference operator. We apply the above finite difference op-
erator on the tensor product mesh ΩN,M = ΩN × ΩM , where ΩN (ΩM ) is
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a piecewise uniform mesh [1] that places a uniform mesh containing O(N)
mesh points in each of the three subregions [0, σx], [σx, 1−σx], [1−σx, 1]. The
transition points σx, σy are taken to be

σx = min
{1

4
, 2

√

ε

γα
ln N

}

, σy = min
{1

4
, 2

√

ε

γα
ln M

}

.

Note that from the pointwise bounds on the layer components and for this
choice of transition point, when σx < 1

4 ,

‖wL(xi, yj)‖ ≤ CN−2, xi ≥ σx.

The discrete solution is decomposed into the sum

U = V + WL + WR + WT + WB + WLB + WLT + WRB + WRT .

where

LN,MV = f, V |Γ N,M = v|Γ N,M , LN,MWL = 0, WL|Γ N,M = wL|Γ N,M ,

and the other layer functions are defined similarly.

The maximum pointwise error ‖u − U‖ is estimated by bounding each of
the error components ‖v − V ‖, ‖wL − WL‖, ‖wR − WR‖ . . . separately. The
error ‖v − V ‖ is bounded using a classical truncation error and comparison
principle argument. When σ = 1

4 this classical argument is also used to bound
the error in the layer components. For the case when σ < 1

4 , we have the
following bounds on the discrete boundary layer function WL
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Outside the associated layer region and when σx < 1
4 , this bound is used to

show that

‖(wL − WL)(xi, yj)‖ ≤ CN−1, xi ≥ σx.

Note that, for xi < σx, the truncation error is
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which implies that

‖wL − WL‖ ≤ CN−1 ln N + CM−1.

The error in the other layer components are bounded in an analogous
fashion.

Lemma 2. Let u be the solution of the differential equation (1.1) and U be

the discrete solution defined above. Then at each mesh point (xi, yj) ∈ Ω̄N,M

|(U − u)(xi, yj)| ≤ CN−1 ln N + CM−1 ln M.

where C is a constant independent of ε, µ and N .
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