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Abstract. First we consider two second order autonomous differential equations
with critical points, which allow to detect an exact number of solutions of the Dirich-
let boundary value problem. Then non-autonomous equations with similar behavior
of solutions are considered. Estimations from below of the number of solutions to
the Dirichlet boundary value problem are given.
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1. Introduction

In the work [1, Ch. 15] estimations of the number of solutions to the boundary
value problem

x′ = h(t, x, y), y′ = f(t, x, y), (1.1)

a1x(a) − b1x
′(a) = 0, (1.2)

a2x(b) − b2x
′(b) = 0

were obtained. These estimations were based on comparison of the behavior
of solutions in some neighborhood of the zero solution and at infinity. Notice
that the zero solution exists since h(t, 0, 0) = f(t, 0, 0) = 0. It is convenient to
explain the result of Perov in terms of the angular function ϕ(t), which can
be introduced by the relations

x = ρ sinϕ, y = ρ cosϕ, ρ2 = x2 + y2. (1.3)

One gets the following equations for the functions ϕ and ρ :
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ϕ′ =
1

ρ
[h cosϕ − f sin ϕ],

ρ′ = h sin ϕ + f cosϕ.

(1.4)

Let ϕ0 and ϕ1 be the angles which relate respectively to the first and the
second boundary conditions (1.2). Let us set

ρ0 =
√

x2(a) + y2(a).

Suppose that a solution ϕ(t) of the system (1.4), which is defined by the
initial condition ϕ(a) = ϕ0 for ρ0 ∼ 0, takes exactly m values of the form
ϕ1(mod π). Moreover, assume that a solution ϕ(t), which is defined by the
initial condition ϕ(a) = ϕ0 and which relates to values ρ0 ∼ +∞, takes n

values of the form ϕ1(mod π). Then there exist at least 2|n − m| nontrivial
solutions of the problem.

Fig.1 visualizes the case of n = 0 and m = 1. Two possible solutions of
the BVP are represented by two semicircles.

x

x’

Figure 1. Perov’s result (m = 1, n = 0), bold lines denote orbits of solutions of
BVP; normal lines denote orbits at infinity and at zero.

Due to different rates of whirling of solutions near the zero and at infinity
multiple solutions of the problem appear.

The above mentioned result by A. Perov is much more general than that
described by Fig.1, since equations in (1.1) are non-autonomous.

Our aim in this paper is the following. We consider the second order equa-
tions, which are equivalent to two-dimensional systems, which are similar to
those treated by A. Perov and which, moreover, can have hetero- and ho-
moclinic type solutions. First, we consider autonomous equations which have
singular points of the type saddle-center-saddle. Such equation has a hetero-
clinic solution and it may have multiple solutions of the Dirichlet problem. The
obtained results are then generalized to the case of non-autonomous equation,
which has a solution, defined on a finite interval and which possesses some
properties of a heteroclinic solution.
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Similar situation is considered for autonomous equations which have sin-
gular points of the type focus-saddle. This equation has a homoclinic solution
and it may also have multiple solutions of the Dirichlet problem.

2. Autonomous Equations I

Consider the equations
x′′ = −x + x3,

x′′ = −x + x2.
(2.1)

We will show that the Dirichlet boundary value problems for equations (2.1)
have different numbers of solutions.

Consider the problem
{

x′′ = −αx + x3,

x(0) = 0, x(1) = 0,
(2.2)

where the parameter α is positive. The equivalent system
{

x′ = y,

y′ = −αx + x3
(2.3)

has a center at (0; 0) and two saddle points at (−√
α; 0) and (

√
α; 0). The het-

eroclinic orbit connects two saddle points. The respective heteroclinic solution
has “an infinite” period [2]. The phase portrait of the solution is presented in
Fig. 2.

Figure 2. Visualization of Phase portrait.
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Proposition 1. Let the condition

π2n2 < α < π2(n + 1)2 (2.4)

hold, where n is a non-negative integer. Then problem (2.2) has exactly 2n

nontrivial solutions.

3. Non-Autonomous Equations I

Consider the BV problem






x′′ = f(t, x),

x(0) = x(1) = 0,
(3.1)

where function f satisfies the following conditions:

(A1) f and fx are C(I × R)-functions;

(A2) f(t, 0) ≡ 0;

(A3) xf(t, x) > 0 for t ∈ I, |x| > M , where M > 0 is constant;

(A4) there exists a solution η(t) of the problem (3.1), η(0) = 0, η′(0) > 0
such that η(t) does not vanish in the interval (0; 1];

(A5) there exists a solution ξ(t) of the problem (3.1), ξ(0) = 0, ξ ′(0) < 0
such that ξ(t) does not vanish in the interval (0; 1];

(A6) solutions of equation (3.1) extend to the interval (0; 1].

Theorem 1. Let the conditions (A1) – (A6) hold. Assume also that solu-

tions y(t) of the Cauchy problem







y′′ = fx(t, 0)y,

y(0) = 0, y′(0) = 1

have exactly n zeros in the interval (0, 1) and y(1) 6= 0. Then problem (3.1)
has at least 2n nontrivial solutions.
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Figure 3. Visualization of Theorem 1.
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4. Autonomous Equations, II

Consider the problem






x′′ = −αx + x2,

x(0) = 0, x′(0) = 1,
(4.1)

where the parameter α is positive. The equivalent system

{

x′ = y,

y′ = −αx + x2
(4.2)

has a focus at (0; 0) and a saddle point at (α; 0). The homoclinic orbit connects
the saddle point to itself. It has “an infinite” period. A phase portrait is
presented in Fig. 4.

Figure 4. Visualization of Phase portrait.

Proposition 2. Suppose that the condition

π2n2 < α < π2(n + 1)2 (4.3)

hold, where n is a positive integer. Then problem (4.1) has exactly 2n − 1
nontrivial solutions.

5. Non-Autonomous Equations II

Let us consider the problem
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x′′ = f(t, x),

x(0) = x(1) = 0,
(5.1)

where function f satisfies the conditions:

(A1) f, fx ∈ C(I × R);

(A2) f(t, 0) ≡ 0;

(B) f(t, x) > c|x|p for t ∈ I, |x| > M , where c > 0, p > 1, M > 0 are
constants;

(A4) there exists a solution η(t) of the problem (5.1), η(0) = 0, η′(0) > 0
such that η(t) does not vanish in the interval (0; 1];

(A6) solutions of equation (3.1) extend to the interval (0; 1].

Theorem 2. Let the conditions (A1), (A2), (B), (A4) and (A6) hold.

Suppose that a solution y(t) of the Cauchy problem







y′′ = fx(t, 0)y,

y(0) = 0, y′(0) = 1
(5.2)

has exactly n ≥ 1 zeros in the interval (0, 1) and y(1) 6= 0. Then the problem

(5.1) has at least 2n − 1 solutions.

The statement of this theorem is illustrated in Fig. 5.
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Figure 5. Visualization of Theorem 2.
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