
Mathematical Modelling and Analysis 2005. Pages 505–512

Proceedings of the 10th International Conference MMA2005&CMAM2, Trakai

c© 2005 Technika ISBN 9986-05-924-0

FINITE-DIFFERENCE SCHEMES OR

FINITE ELEMENT METHOD FOR

WEAKLY COMPRESSIBLE GAS

A.V. POPOV and K.A. ZHUKOV

Department Mechanics and Mathematics, Moscow State University

Leninskie gori, MSU, 119992, Russia

E-mail: popovav@mech.math.msu.su

Abstract. An implicit finite difference scheme with a splitting operator is con-
structed for a linear system of equations describing an unsteady viscous weakly
compressible gas flow in the case of two spatial variables. For the numerical solution
of this scheme, an error estimate is obtained depending on the parameter character-
istics and gas viscosity. The numerical results presented show the efficiency of this
method in comparison with an implicit scheme based on iterative conjugate gradient
methods. A finite element scheme is considered and error estimate in this case is
obtained.
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1. Initial-Boundary Value Problem

Consider the system of linear equations describing an unsteady flow of a vis-
cous weakly compressible barotropic gas:





∂p

∂t
+ k divu = 0,

∂u

∂t
+ ∇p = µ∆u+ f .

(1.1)

The sought pressure p and vector u = (u1, u2) are functions of Euler
variables (t, x) ∈ QT = [0, T ] × Ω. Here, µ denotes the dynamic viscosity,
which is considered to be a known positive constant. The function f (the
vector of external forces) appearing in the equations is a known function of
Euler variables. The parameter k denotes a positive constant characterizing
gas compressibility (see [1, 2]). We consider the gas to be weakly compressible
if k > 1.

System (1.1) is supplemented by the initial and boundary conditions
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(p,u)|t=0 = (p0,u0), x ∈ Ω,

u(t, x) = 0, (t, x) ∈ [0, T ]× ∂Ω.
(1.2)

Below, we assume that there exists a unique solution to problem (1.1), (1.2).

2. Notation and Auxiliary Statements

Let Ω = [0, l1] × [0, l2], h1 = l1/M1, h2 = l2/M2 and

Ωh
1 = {(ih1, jh2) : 0 ≤ i ≤M1, 0 ≤ j ≤M2},

Ωh
2 = {((i+ 1/2)h1, (j + 1/2)h2) : 0 ≤ i ≤M1 − 1, 0 ≤ j ≤M2 − 1}.

Let Ωh
1 and ∂Ωh

1 denote the sets of interior and boundary points of Ωh
1 ,

respectively. Assume that Uh
1 is space of functions Ui,j , defined on Ωh

1 and
vanishing on ∂Ωh

1 , Uh
1 is space of functions Ui,j , defined on Ωh

1 , and Ph
2 is the

space of functions Pi+ 1

2
,j+ 1

2

, defined on Ωh
2 , and U

h
1 = Uh

1×Uh
1 , Uh

1 = Uh
1×Uh

1

are the linear space of vector functions.
Then, define the difference differentiation operators ∂̃12

x , ∂̃12
y : Uh

1 → Ph
2 :

(∂̃12
x U)i+ 1

2
,j+ 1

2

=
1

2

(Ui+1,j − Ui,j

h1

+
Ui+1,j+1 − Ui,j+1

h1

)
,

(∂̃12
y U)i+ 1

2
,j+ 1

2

=
1

2

(Ui,j+1 − Ui,j

h2

+
Ui+1,j+1 − Ui+1,j

h2

)
,

i = 0, . . . ,M1 − 1, j = 0, . . . ,M2 − 1;

and ∂̃21
x , ∂̃21

y : Ph
2 → Uh

1 :

(∂̃21
x P )i,j =

1

2

(
Pi+ 1

2
,j+ 1

2

− Pi− 1

2
,j+ 1

2

h1

+
Pi+ 1

2
,j− 1

2

− Pi− 1

2
,j− 1

2

h1

)
,

(∂̃21
y P )i,j =

1

2

(
Pi+ 1

2
,j+ 1

2

− Pi+ 1

2
,j− 1

2

h2

+
Pi− 1

2
,j+ 1

2

− Pi− 1

2
,j− 1

2

h2

)
,

i = 1, . . . ,M1 − 1, j = 1, . . . ,M2 − 1;

and the difference divergence divh, d̃ivh : U
h
1 → Ph

2 , gradient ∇h, ∇̃h : Ph
2 →

U
h
1 , and the discrete Laplacian ∆h : Uh

1 → Uh
1 operators:

(divhU )i+ 1

2
,j+ 1

2

=
U1

i+1,j − U1
i,j

h1

+
U2

i,j+1 − U2
i,j

h2

,

i = 0, . . . ,M1 − 1, j = 0, . . . ,M2 − 1;

(∇hP )i,j =
{Pi+ 1

2
,j+ 1

2

− Pi− 1

2
,j+ 1

2

h1

,
Pi+ 1

2
,j+ 1

2

− Pi+ 1

2
,j− 1

2

h2

}
,

i = 1, . . . ,M1 − 1, j = 1, . . . ,M2 − 1;
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d̃ivhU = ∂̃12
x U1 + ∂̃12

y U2, ∇̃hP =
(
∂̃21

x P, ∂̃21
y P

)
, ∆hU = (∆hU1, ∆hU2);

∆hU =

(
Ui+1,j − 2Ui,j + Ui−1,j

h2
1

+
Ui,j+1 − 2Ui,j + Ui,j−1

h2
2

)
.

We use the following norms in spaces of functions U
h
1 and Ph

2 :

‖U‖ =

√
h1h2

∑

i,j∈Ωh

1

(U1
i,j)

2 + (U2
i,j)

2, ‖P‖ =

√
h1h2

∑

i,j∈Ωh

2

(Pi−1/2,j−1/2)2.

For functions in U
h
1 , we will also use the norm ‖·‖−1 defined in the dual space

by the following equality

‖U‖−1 = sup
ϕ∈Uh

1

|(ϕ,U)|
|ϕ|1

,

where a seminorm |U |1 is the expression (−∆hU,U)0.5.

3. Finite-Difference Scheme

In [1, 2], problem (1.1), (1.2) was solved by applying the difference scheme



Pt + k d̃ivhÛ = 0,

U t + ∇̃hP̂ = µ∆hÛ + F̂ ,
(3.1)

where U = Un, n = 0, 1, . . . , N (Nτ = T ), Û
n

= Un+1, P̂n = Pn+1,

U t =
Û −U
τ

, Pt =
P̂ − P

τ
,

and ω̄τ = {lτ : 0 ≤ l ≤ N}.
The initial and boundary conditions for scheme (3.1) are defined by the

equalities
(P,U )|n=0 = (p0,u0), U |∂Ωh

1
×ωτ = 0. (3.2)

The Uzawa method is considered a classical algorithm for this purpose.
It can be described as follows. The value U is expressed from the second
equation in (3.1) and substituted into the first equation to obtain

(E− τ2k d̃ivh(E−τµ∆h)−1∇̃h)P̂ =−τ d̃ivh(E−τµ∆h)−1(τ F̂+U)+P, (3.3)

Û = −τ(E − τµ∆h)−1∇̃hP̂ + (E − τµ∆h)−1(τ F̂ +U ). (3.4)

Thus, the problem is reduced to equations (3.3) and (3.4), which are solved
sequentially. Let define

G = −τ d̃ivh(E − τµ∆h)−1(τ F̂ +U ) + P,

Bh
0 = (E − τ2k d̃ivh(E − τµ∆h)−1∇̃h).
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The equations written show that the most laborious part in finding a
difference solution on the upper time level is solving the equation Bh

0 P̂ = G.
In this paper, we propose a modification of scheme (3.1) based on replacing
Bh

0 with a splitting operator:

(
E− τ2k ∂̃12

x (E− τµ∆h)−1∂̃21
x

)(
E− τ2k ∂̃12

y (E− τµ∆h)−1∂̃21
y

)
P̂ = G. (3.5)

Then, the difference scheme takes the form

{
Pt + k d̃ivhÛ + k2τ3BhP̂ = 0,

U t + ∇̃hP̂ = µ∆hÛ + F̂ ,
(3.6)

where
Bhq = ∂̃12

x (E − τµ∆h)−1∂̃21
x ∂̃12

y (E − τµ∆h)−1∂̃21
y P.

As before, the initial and boundary conditions are given by (3.2). This differ-
ence scheme was considered in [3].

Theorem 1. A solution to difference scheme (3.6), (3.2) exists and is unique.

4. Error Analysis of the Finite-Difference Scheme

Let ψ1 and ψ2 denote the residuals arising when the mesh projections of the
exact solution to problem (1.1), (1.2) are substituted into equations (3.6):

ψ1 =
1

k

(
∂p

∂t
− pt̄

)
+ divu− d̃ivhu− kτ3Bhp, p̌n = pn−1, pt̄ =

p− p̌

τ

ψ2 = µ(∆hu−∆u) +
∂u

∂t
− ut̄ + ∇p− ∇̃hp, ǔn = un−1,ut̄ =

u− ǔ
τ

.

Theorem 2. The difference between the difference solution and the exact so-

lution to problem satisfies the estimate

R1 ≡ N
max
n=1


 1√

k
‖pn − Pn‖ + ‖un −Un‖ +

√√√√τµ

n∑

m=1

‖∇h(um −Um)‖2




≤
√

3

(
1√
k
‖p0 − P 0‖ + ‖u0 −U 0‖ + 2

√
2τ

N∑

n=1

(√
k‖ψn

1 ‖ + ‖ψn
2‖
))

.

Corollary 1. The smooth solution (u, p) to the differential problem satisfies
the estimate

R1 ≤ C eT

(
τ + (1 +

√
k)h2 +

(√
kτ/µ

)3
)
.

In fact, Theorem 2 fails to estimate the error in p for large k. A more
precise estimate of this error is given by the following theorem.
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Theorem 3. The difference between the difference solution and the exact so-

lution to problem satisfies the estimate

R2 ≡ N
max
n=1

(
‖pn − Pn‖+‖un −Un‖+

‖pn
t̄ − Pn

t̄ ‖√
kµ

+
‖un

t̄ −U
n
t̄ ‖

µ
+ |un −Un|1

)

≤ C

(
(µ+

√
µT +

√
k)τ + 1

τµ

(
‖p0 − P 0‖ + |(p0 − P 0, 1)| + ‖u0 −U 0‖

+
√
τµ|u0 −U 0|1

)
+

1 +
√
Tµ

µ
h2 +

√√√√µτ

N∑

n=1

‖ψn
1 ‖2 +

√√√√ τ

µ

N∑

n=1

‖ψn
2‖2

−1

+

√√√√ τ

µ3

N−1∑

n=2

‖(ψn
1 )tt̄‖2 +

√√√√ τ

µ3

N∑

n=2

‖(ψn
2 )t̄‖2

−1 +

√√√√ τ

µ

N∑

n=1

‖ψn
2 ‖2

+
1

µ

(
N

max
n=1

(‖ψn
2‖−1 + ‖(ψn

1 )t̄‖) + (1 + τ
√
k)(

√
k‖ψ1

1‖ + ‖ψ1

2‖)
))

.

Corollary 2. For a smooth solution (u, p) of the differential problem the error
can be estimated as

R2 ≤ C
(1 +

√
Tµ

µ
h2 +

(√
µ+

1√
µ3

+
τ
√
k

µ

)
+ τ

+ h2 + k
√
τ3/µ3 +

(1 + τ
√
k)
√
k

µ
(h2 + k

√
τ3/µ3)

)
.

Remark 1. If τ
√
k is bounded, then inequality takes the form

R2 ≤ C
(
τ + (1 +

√
k)
(
h2 + kτ3/2

))
,

where the dependence of the differential solution on µ and k is not shown
explicitly but is hidden in C.

5. Numerical Results

To illustrate the theoretical results, problem (1.1), (1.2) in Ω = [0, 1] × [0, 1]
was solved numerically for various k and µ. Consider the case, when problem
(1.1), (1.2) has the smooth solution

p = − cos( kπ
t+2.5 )(cos(πx) sin(2πy) + sin(2πx) cos(πy)),

u1 = 1

t+2.5 sin( kπ
t+2.5 ) sin(πx) sin(2πy),

u2 = 1

t+2.5 sin( kπ
t+2.5 ) sin(2πx) sin(πy).

We implemented schemes (3.1) and (3.6). A solution to the former was
computed using the conjugate gradient method. The numerical results have
shown that the scheme with a splitting operator is especially efficient in com-
parison with the implicit scheme described when k is large. The numerical
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Table 1.

SM CG SM CG SM SG

τ/h 1/32 1/32 1/64 1/64 1/128 1/128

1/32 3.8e-1 — 3.8e-1 — 3.8e-1 —
1/64 9.9e-2 — 9.4e-2 — 9.4e-2 —
1/128 1.7e-2 5.8e-3 1.6e-2 — 1.6e-2 —
1/256 1.3e-2 7.5e-4 1.0e-2 9.2e-3 1.0e-2 4.1e-3

Table 2.

SM CG SM CG SM SG

τ/h 1/32 1/32 1/64 1/64 1/128 1/128

1/32 6.2e-1 — 6.4e-1 — 6.4e-1 —
1/64 7.8e-2 — 8.7e-2 — 8.9e-2 —
1/128 1.5e-2 3.8e-1 1.6e-2 — 1.6e-2 —
1/256 5.5e-3 3.6e-1 5.5e-3 1.2e-1 6.9e-3 9.0e-2

Table 3.

SM CG SM CG SM SG

τ/h 1/32 1/32 1/64 1/64 1/128 1/128

1/32 2.8e-3 1.0e-2 2.6e-3 1.2e-2 3.0e-3 1.3e-2
1/64 2.9e-3 3.0e-3 7.0e-4 5.6e-3 7.8e-4 6.3e-3
1/128 3.3e-3 4.3e-4 6.5e-4 2.3e-3 2.0e-4 2.9e-3
1/256 3.4e-3 1.9e-3 7.6e-4 6.8e-4 1.1e-4 1.3e-3

results for k = 30 and µ = 10−2 are presented in Tab. 1 and Tab. 2. They
contain the L2 norms of the errors in pressure and the first component of ve-
locity, respectively. A dash in both tables means that no solution to difference
scheme (3.1) was found. With these values of k and µ, the conjugate gradient
method does not converge for large time steps, while the splitting method,
which is not. The divergence of the conjugate gradient method is apparently
connected with the fact that the matrix of the system is ill conditioned and
there exist roundoff errors in computer calculations.

At the same time, for small k, the splitting method is not inferior to
the implicit scheme. This can be seen from Tab. 3 and Tab. 4, which list
the L2 norms of the errors in pressure and the first component of velocity,
respectively, for k = 1 and µ = 10−1. It follows from the aforesaid that, for
large k, scheme (3.6) with a splitting operator is preferable to implicit scheme
(3.1) whose solution is sought by the conjugate gradient method, while, for
small k, the numerical results for both schemes are much the same.
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Table 4.

SM CG SM CG SM SG

τ/h 1/32 1/32 1/64 1/64 1/128 1/128

1/32 4.0e-2 6.6e-2 3.2e-2 5.5e-2 2.9e-2 5.2e-2
1/64 2.3e-2 3.9e-2 1.3e-2 2.8e-2 1.0e-2 2.6e-2
1/128 1.8e-2 2.5e-2 7.7e-3 1.5e-2 5.2e-3 1.2e-2
1/256 1.5e-2 1.9e-2 5.5e-3 9.2e-3 2.9e-3 6.7e-3

6. Finite Element Method

Since finite difference schemes make stringent demands to the smoothness of
the problem (1.1)-(1.2), we will consider application of the finite elements
method which makes lower demands to smoothness. We will decompose Ω
to the several ”big” rectangles, then each rectangle we decompose to 4 equal
”small” rectangles. We define piecewise constant function spaces Ph for ”big”
rectangle and piecewise linear function space Uh for ”small” rectangles. Then
we obtain the next system of equation

(qt̄, ψ)Ω + k(div v, ψ)Ω = 0,

(vt̄, ϕ)Ω − (q, divϕ)Ω + µ(∇v,∇ϕ)Ω = (f , ϕ)Ω ,

where ψ ∈ Ph, ϕ ∈ Uh, with the initial conditions

(q0,v0) = (ph(0),uh(0)).

Boundary conditions for v are satisfied automatically.
The linear system of algebraic equation with variables q, v = (v1, v2):

qt̄ + k(BTv)1 + k(BTv)2 = 0,

Cv1

t̄ −B1q + µAv1 = f1,

Cv2

t̄ −B2q + µAv2 = f2,

where f1
m, f2

m are the m normed components of the projection f onto the
basis Uh,
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(Avl)ij =
1

h1h2

[4(h2
1 + h2

2)

3h1h2

vl
i,j −

h2
1 + h2

2

6h1h2

vl
i+1,j+1 −

−h2
1 + 2h2

2

3h1h2

vl
i+1,j

− h2
1 + h2

2

6h1h2

vl
i+1,j−1 −

2h2
1 − h2

2

3h1h2

vl
i,j+1 −

2h2
1 − h2

2

3h1h2

vl
i,j−1

− h2
1 + h2

2

6h1h2

vl
i−1,j+1 −

−h2
1 + 2h2

2

3h1h2

vl
i−1,j −

h2
1 + h2

2

6h1h2

vl
i−1,j−1

]
,

i = 1, . . . , 2M1 − 1, j = 1, . . . , 2M2 − 1, l = 1, 2;

(B1q)ij =
1

2h1





−qij + qi−2,j + qi−2,j−2 − qi,j−2, for i = 2l, j = 2m,
−2qi,j−1 + 2qi−2,j−1, for i = 2l, j = 2m+ 1,
0, for i = 2l + 1,

(B2q)ij =
1

2h2





−qij − qi−2,j + qi−2,j−2 + qi,j−2, for i = 2l, j = 2m,
−2qi−1,j + 2qi−1,j−2, for i = 2l + 1, j = 2m,
0, for j = 2m+ 1,

i = 1, . . . , 2M1 − 1, j = 1, . . . , 2M2 − 1;

(BTv)ij =
v1

i+2,j+2 + 2v1
i+2,j+1 + v1

i+2,j − v1
i,j+2 − 2v1

i,j+1 − v1
ij

8h1

+
v2

i+2,j+2 + 2v2
i+1,j+2 + v2

i,j+2 − v2
i+2,j − 2v2

i+1,j − v2
ij

8h2

,

i = 0, 2, . . . , 2M1 − 2, j = 0, 2, . . . , 2M2 − 2;

(Cv)ij =
16vij + vi−1,j+1 + 4vi,j+1 + vi+1,j+1 + 4vi+1,j

36

+
vi+1,j−1 + 4vi,j−1 + vi−1,j−1 + 4vi−1,j

36
.

Theorem 4. A solution of the finite element scheme exists and is unique.

Theorem 5. The error the difference solution satisfies the following estimate:

1

k
max

n=1,...,N
‖qn − pn‖ + max

n=1,...,N
‖vn − un‖ + µτ

N∑

n=1

‖∇(vn − un)‖

≤ C(µ,Ω, T, k)(h+

√
kh

µ
+ τ).
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