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Abstract. In this work we deal with the numerical resolution of linear evolution-
ary singularly perturbed problems which are posed on an open convex polygon Ω.
In order to obtain a robust and efficient fully discrete algorithm, we first carry out a
time integration using a Fractional Step Runge-Kutta method, where the splitting
for the elliptic operator is related to a suitable decomposition of Ω. For the spatial
discretization, we use certain special meshes which concentrate points in the bound-
ary layers. The keys for the efficiency of the resultant monotone algorithms are that
the calculations required for each Fractionary Step can be parallelized and, besides,
no Schwarz iteration techniques are required.
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1. Introduction

Singularly perturbed problems (SPP) arise very often in various areas of sci-
ences and engineering (see [3]). The main peculiarity of the solutions of such
problems is the existence of certain narrow zones on the domain (called interior
or boundary layers) where they vary very rapidly; the smaller the perturba-
tion parameter ε is, the narrower the layers are and, consequently, the steeper
the gradients of the solutions are. It is well known that such behaviour pro-
vokes the obtaining of inaccurate numerical solutions if standard discretization
techniques are used, unless very fine (ε-dependent) meshes are considered.

The uniform convergence is the key property which a numerical method
must satisfy to be suitable for an SPP. This property guarantees acceptable
numerical solutions for every value of ε with a computational cost essentially
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independent of the size of this parameter. One of the simplest and most suc-
cesful techniques for designing uniformly convergent methods was introduced
by Shishkin (see [7]). He proposed, firstly for one dimensional problems, cer-
tain piecewise uniform meshes which concentrate points in the layers. Then
he extended the construction procedure of this type of meshes to rectangles
and both standard and advanced discretizations on such special meshes (see
[1, 3]) were proven to lead to uniformly convergent schemes, the latter with
lower computational cost than the former.

In this framework, an attempt of generalization to problems on polygo-
nal domains was made in [5], where Fractional Step Runge-Kutta (FSRK)
schemes, with an operator splitting related to a suitable decomposition of the
spatial domain, were combined with finite elements on certain Shishkin-type
meshes. This technique led us to new schemes which are easily parallelizable
and whose uniform convergence was numerically tested. Nevertheless those
algorithms had the drawback of not being monotone due to the existence of
obtuse angles in the layer zones of the mesh.

In this paper, we propose to combine similar time discretizations with
generalized finite differences on a slightly different Shishkin-type mesh whose
angles are all of them less or equal than 90◦. This provides numerical algo-
rithms which are not only parallelizable but also monotone and whose uniform
convergence has also been numerically tested. Concretely, a numerical test for
a diffusion-reaction problem is presented in the last section of the paper.

2. The Problem and the Shishkin-Type Special Meshes

Due to the limitation in size of this paper we shall explain only the following
diffusion-reaction case: Find u : Ω × [t0, T ] → R such that



















∂u

∂t
− ε∆u+ b(x̄, t)u = f(x̄, t), (x̄, t) ∈ Ω × (t0, T ],

u(x̄, t0) = u0(x̄), x̄ ∈ Ω,

u(x̄, t) = g(x̄, t), (x̄, t) ∈ Γ × (t0, T ],

(2.1)

where Ω ⊆ R
2 is an open convex polygon and Γ = ∂Ω. The singular per-

turbation parameter 0 < ε << 1 appears multiplying the diffusion term and
b(x̄, t) denotes the reaction coefficient which we assume to be regular enough
and to satisfy b(x̄, t) ≥ β > 0. We also suppose that the exact solution of
this problem is sufficiently regular both in time and in space and that data
f, u0 and g are smooth enough and satisfy certain compatibility conditions
among them.

When ε is much smaller in size than b(x̄, t) parabolic boundary layers
O(

√
ε) wide appear along all the segments of Γ . Inside each one of these

layers the solution varies very quickly in one direction (the perpendicular
direction to the boundary segment) and in the intersection of two of them,
regions called corner layers, the solution varies very quickly in two directions
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(the perpendicular directions to the two boundary segments which intersect in
that corner). Regular boundary layers or interior layers are not present under
the previous assumptions.

In order to construct a special mesh for Ω, let us consider N = 4d, with

d a positive integer, and define σ = min
{

1

4
, 1

β

√
ε logN

}

. Firstly we draw in

the interior of Ω one parallel segment to each boundary segment at a distance
σ. We call them transition segments since they have a similar role to that of
the transition points in 1D Shishkin meshes, i.e. they split the fine and the
coarse mesh zones.

Figure 1. Special mesh for a regular hexagon Ω of side l = O(1) when ε =
O(10−2), β = 1 and N = 16.

In Fig. 1 we show an example of these special meshes for the case when Ω
is a regular hexagon. Note that each one of the three diagonals of Ω shows the
structure of a Shishkin 1D mesh, i.e. we consider N

4
equidistant points in both

ends of the segment (inside the boundary layers) and N
2

equidistant points
in the interior part of the segment. The coarse mesh inside Ω is constructed
as the regular mesh of equilateral triangles which contains the mesh points
previously defined on the diagonals. To obtain an appropriate mesh for the
quick variation zone, N

4
− 1 parallel equidistant segments are firstly drawn

between each boundary segment and its corresponding transition segment.
Then, drawing 3N

4
−1 perpendicular segments to each boundary side of Ω, as

it is shown in Fig. 1, a mesh consisting of triangles and rectangles is obtained.
At this point, if we divide each one of such rectangles into two triangles we
obtain a triangular mesh which is appropriate to solve our diffusion-reaction
problem since it is fine enough in the appropriate directions. Note that this
technique can be easily generalized to other convex polygonal domains.



246 L. Portero, J.C. Jorge

3. The Totally Discrete Algorithm

The IBVP (2.1) admits the following operational formulation: Find u :
[t0, T ] → H such that







du(t)

dt
= A(t)u(t) + f(t), t ∈ (t0, T ],

u(t0) = u0 ∈ H, Bu(t) = g(t) ∈ Hb,

where H and Hb are spaces of functions defined on Ω and Γ , respectively.
A(t) : D ⊆ H −→ H is the elliptic differential operator A(t) = ε∆ − b(x̄, t) I
and B : D ⊆ H −→ Hb is an abstract trace operator.

In order to use an FSRK method as time integrator we should consider
certain decompositions for A and f :

A(t) =
m

∑

i=1

Ai(t), f(t) =
m

∑

i=1

fi(t).

Then, for τ (constant) time step, approximations un(x̄) ≈ u(x̄, tn) are ob-
tained by solving:





















































U j
n = un + τ

j
∑

k=1

aik

jk

(

Aik
(tn,k)Uk

n + fik
(tn,k)

)

,

Bij
U j

n = g(tn,j), for j = 1, . . . , s,

un+1 = un + τ

s
∑

j=1

b
ij

j

(

Aij
(tn,j)U

j
n + fij

(tn,j)
)

, n = 0, 1, . . . , nf ,

(3.1)

where ij ∈ {1, . . . ,m}, tn = t0 + nτ , tn,j = tn + cjτ , nf =

[

T

τ

]

− 1. The

improvement which these methods provide with respect to standard time in-
tegrators such as Runge-Kutta schemes comes from the fact that the operator
which acts implicitly in the j-th internal stage is Aij

(t) instead of A(t).

The splitting chosen in this work is related to a decomposition of the spatial
domain Ω as the union of certain overlapped subdomains Ω =

⋃m

i=1
Ωi. Each

one of these subdomains consists of the union of a certain number of disjoint
components Ωi =

⋃mi

j=1
Ωij , with Ωij ∩ Ωik = ∅ if j 6= k (see [4]). Let us

construct a sufficiently smooth partition of unity {ψi(x̄)}m
i=1 such that ψi(x̄)

takes the value 0 outside subdomain Ωi, varies smoothly between 0 and 1 in
the overlaps of Ωi with the rest of the subdomains and takes the value 1 in the
points which belong just to subdomain Ωi and not to any other subdomain.
From this partition of unity we can define

Ai(x̄, t) = ε div (ψi(x̄) ∇) − ψi(x̄) b(x̄, t) I,
fi(x̄, t) = ψi(x̄)f(x̄, t) ∀ i = 1, . . . ,m.
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Finally, for j ∈ {1, . . . , s} and ij ∈ {1, . . . ,m}, Bij
U j

n means to evaluate U j
n

on Ωij
∩ Γ .

Hence, when combining the previous time integration with a suitable spa-
tial discretization, the calculation of the j-th stage consists of the resolution
of a linear system with a number of unknowns equal to the number of mesh
points in subdomain Ωij

and not to the total number of mesh points, as it
happens when using a classical time integrator. Moreover, as Ωij

consists of
the union of mij

disjoint connected components, such system will be actually
a collection of mij

smaller uncoupled linear systems which can be solved in
parallel. In the mesh points outside of Ωij

we just have to update the values
of the unknowns according to U j

n = F j
n where

F j
n ≡ un + τ

j−1
∑

k=1

aik

jk

(

Aik
(tn,k)Uk

n + fik
(tn,k)

)

+ a
ij

jjfij
(tn,j).

There is also an improvement in using this technique with respect to the use
of domain decomposition methods for parabolic problems (see [6]) which is
that it does not require any iterative process.

The time integrator used in the numerical examples included in the follow-
ing section is the Fractionary Implicit Euler scheme. It is first order consistent
and stable even for a family of non-commutative operators {Ai(t)}m

i=1. This
method provides numerical approximations un+1 ≈ u(tn+1) by solving















{

(I − τAj(tn+1))U
j
n = U j−1

n + τfj(tn+1), (U0
n = un),

BjU
j
n = g(tn+1), for j = 1, . . . ,m,

un+1 = Um
n , n = 0, 1, . . . , nf .

Note that this method is included into the family of FSRK schemes since it
can be written as (3.1) if we consider s = m, ik = k ∀ k ∈ {1, . . . ,m} and

aik

jk = b
ij

j = cj = 1 ∀ j, k ∈ {1, . . . ,m}.
Hence, the resolution of each internal stage consists of solving the elliptic

equation

(I − τε div(ψj∇) + τψjI)U j
n = U j−1

n + τψjf(tn+1)

together with the boundary condition U j
n|Ωj∩Γ = g(tn+1)|Ωj∩Γ . The spatial

discretization of such boundary value problems will be carried out by using
generalized finite differences (see [2]). Let TN be the triangulation of Ω defined
by the special mesh introduced in the previous section and let P0 be an interior
node of TN with N0 neighbour nodes (P1, . . . , PN0

). Given i ∈ {1, . . . , N0},
K0,i,i+1 denotes the triangle of vertices P0, Pi, Pi+1 (considering PN0+1 ≡ P1)
and B0,i,i+1 denotes the barycenter of such triangle. If we define V0 as the

convex polygon of vertices {B0,i,i+1}N0

i=1 and A(V0) denotes the area of V0,
the difference equation for node P0 is:
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τεψj(P0)

N0
∑

i=1

1

4A(K0,i,i+1)

|P0Pi|2 − |PiPi+1|2 − |P0Pi+1|2
2

(U j
n,i − U

j
n,0)

+τεψj(P0)

N0
∑

i=1

1

4A(K0,i,i+1)

|P0Pi+1|2 − |PiPi+1|2 − |P0Pi|2
2

(U j
n,i+1 − U

j
n,0)

+(1 + τψj(P0))A(V0)U
j
n,0 = (U j−1

n,0 + τψj(P0)f(P0, tn+1))A(V0),

(3.2)
where, given P,Q ∈ R

2, |PQ| denotes the distance between P and Q.
For each j ∈ {1, . . . ,m}, U j

n,k ≈ U j
n(Pk) and finally un+1,i = Um

n,i ≈
u(Pi, tn+1). The numerical algorithm corresponding to a general FSRK inte-
gration would come from a spatial discretization of type (3.2) applied to each
internal stage

(I − τεa
ij

jj div(ψij
∇) + τa

ij

jjψij
I)U j

n = F j
n,

U j
n|Ωij

∩Γ = g(tn+1)|Ωij
∩Γ .

4. Numerical Examples

Let us now face the resolution of a problem of type (2.1) where t0 = 0, T = 2,

b(x, y, t) = 1 + x2 + y2 + sin
(π

2
t
)

, u0(x, y) = 1, g(x, y, t) = 1,

f(x, y, t)=3te−3t+1 cos
( πy√

3

)

cos
(π

√
3

6

(

y +
√

3x
) )

cos
(π

√
3

6

(

y −
√

3x
) )

.

The domain Ω is the regular hexagon of vertices (− 1

2
,
√

3

2
), ( 1

2
,
√

3

2
), (1, 0),

( 1

2
,−

√
3

2
), (− 1

2
,−

√
3

2
), (−1, 0). As we are interested in checking the uniformly

convergent behaviour of our scheme and not in showing the reduction in com-
putational cost derived from parallelization, we consider a very simple domain
decomposition Ω =

⋃6

i=1
Ωi. Concretely, {Ωi}6

i=1 are six equilateral triangles
(whose three vertices are the two vertices of one side of the hexagon and its
center) extended with a band, which is d = 1

8
in width, added along the sides

of these triangles which are inside Ω. These bands are the overlaps between
the subdomains {Ωi}6

i=1. From the univariate function

i(w) =















0, if −
√

3

2
≤ w ≤ −

√
3d
2
,

1

2
+

√
3

2d
w − 2

√
3

9d3 w
3, if −

√
3d
2

< w <
√

3d
2
,

1, if
√

3d
2

≤ w ≤
√

3

2
,

we construct the following partition of unity:

ψ1(x, y) = i(w1) i(w2) (1 − i(w3)), ψ2(x, y) = i(w1) i(w2) i(w3),

ψ3(x, y) = (1 − i(w1)) i(w2), ψ4(x, y) = (1 − i(w1)) (1 − i(w2)) i(w3),

ψ5(x, y) = (1 − i(w1)) (1 − i(w2)) (1 − i(w3)), ψ6(x, y) = i(w1) (1 − i(w2)),
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Table 1. Maximum global errors and numerical orders of convergence (Nτ = 0.2).

N = 8 N = 16 N = 32 N = 64 N = 128 N = 256

ε = 1 7.076E-3 8.143E-3 4.770E-3 2.669E-3 1.412E-3 7.233E-4
-0.2027 0.7716 0.8375 0.9191 0.9651

ε = 10−2 3.485E-2 2.275E-2 9.712E-3 3.980E-3 1.169E-3 3.087E-4
0.6154 1.2278 1.2871 1.7674 1.9209

ε = 10−4 3.420E-2 2.247E-2 9.539E-3 3.925E-3 1.422E-3 4.837E-4
0.6060 1.2361 1.2814 1.4651 1.5552

ε = 10−6 3.424E-2 2.247E-2 9.537E-3 3.921E-3 1.420E-3 4.832E-4
0.6076 1.2363 1.2853 1.4652 1.5554

ε = 10−8 3.424E-2 2.247E-2 9.538E-3 3.920E-3 1.420E-3 4.832E-4
0.6078 1.2363 1.2827 1.4652 1.5554

where w1 = y, w2 = 1

2
(y +

√
3x), and w3 = − 1

2
(y −

√
3x).

With the previous data, the solution of the problem shows parabolic
boundary layers along the whole boundary Γ . The estimations of the max-
imum global errors have been computed using the double mesh principle

in time and in space, i. e., we define Eτ,N ≡ maxn,i

∣

∣

∣
u

τ,N
n,i − u

τ
2

,2N

n,i

∣

∣

∣
where

u
τ,N
n,i ≈ u(Pi, tn) has been obtained with a discretization of type (3.2) after n

steps of size τ on a mesh with parameter N and u
τ
2

,2N

n,i ≈ u(Pi, tn) has been
obtained with a discretization of type (3.2) after 2n steps of size τ

2
on a mesh

with parameter 2N (the value of σ for the fine mesh has been calculated using
N and not 2N in order to obtain a fine mesh which contains the thick one; this
avoids the need to interpolate). The numerical orders of convergence rate have

been computed as pτ,N = log2

E τ
2

,2N

Eτ,N
. In Tab. 1 we show estimations of the

global errors as well as their corresponding numerical orders of convergence
for different values of N and ε (τ chosen such that Nτ = 0.2).
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