CHARACTERISTIC NUMBERS OF NON-AUTONOMOUS EMDEN-FOWLER TYPE EQUATIONS

A. GRITSANS ${ }^{1}$ and F. SADYRBAEV ${ }^{2}$
${ }^{1}$ Daugavpils University
Daugavpils, Parades str. 1
E-mail: arminge@dau.lv
${ }^{2}$ Institute of Mathematics and Computer Science, University of Latvia
Riga, Rainis blvd 29
E-mail: felix@cclu.lv

Abstract

Consider the Emden - Fowler equation $x^{\prime \prime}=-q(t)|x|^{2 \varepsilon} x, \quad \varepsilon>0$, in the interval $[a, b]$. The coefficient $q(t)$ is a positive valued continuous function. The Nehari's characteristic number λ_{n} associated with the Emden - Fowler equation coincides with a minimal value of the functional $\frac{\varepsilon}{1+\varepsilon} \int_{a}^{b} x^{\prime 2}(t) d t$ over all solutions of the boundary value problem $$
x^{\prime \prime}=-q(t)|x|^{2 \varepsilon} x, \quad x(a)=x(b)=0, \quad x(t) \text { has exactly } n-1 \text { zeros in }(a, b)
$$

The respective solution is called by Nehari's solution. We construct an example which shows that the Nehari's extremal problem may have more than a unique solution.

Key words: Characteristic numbers, Emden - Fowler equation, Nehari's solutions

1. Nehari's Solutions

Behavior of solutions to the Emden - Fowler type equation

$$
\begin{equation*}
x^{\prime \prime}=-q(t)|x|^{2 \varepsilon} x, \quad \varepsilon>0 \tag{1.1}
\end{equation*}
$$

where $q(t)$ is a positive valued continuous function, may be complicated if $q(t)$ is a non-monotone function.

Some regularity to the theory of the Emden - Fowler type equations of the form (1.1) is brought by the so called Nehari's solutions.

The Nehari's theory applies to equations of the type (1.1).

The general theorem by Nehari ([2, Theorem 3.2]) when adapted to the case under consideration states that the extremal problem below has a solution.

Problem:

$$
\begin{equation*}
H(x)=\int_{a}^{b}\left[x^{\prime 2}-(1+\varepsilon)^{-1} q(t) x^{2+2 \varepsilon}\right] d t \rightarrow \inf , \quad x \in \Gamma_{n} \tag{1.2}
\end{equation*}
$$

where Γ_{n} consists of all functions $x(t)$, which are continuous and piece-wise continuously differentiable in $[a, b]$; there exist numbers a_{ν} such that

$$
a=a_{0}<a_{1}<\ldots<a_{n}=b
$$

$x\left(a_{0}\right)=0$ and for $\nu=1, \ldots, n, x\left(a_{\nu}\right)=0$ but $x \not \equiv 0$ in any $\left[a_{\nu-1}, a_{\nu}\right]$, and

$$
\begin{equation*}
\int_{a_{\nu-1}}^{a_{\nu}} x^{\prime 2}(t) d t=\int_{a_{\nu-1}}^{a_{\nu}} q(t) x^{2}|x|^{2 \varepsilon} d t . \tag{1.3}
\end{equation*}
$$

The respective extremal functions $x_{n}(t)$ are those solutions of equation (1.1), which vanish at the points $t=a$ and $t=b$, have exactly $n-1$ zeros in (a, b) and satisfy the condition

$$
\begin{equation*}
\int_{a}^{b} x^{\prime 2} d t=\int_{a}^{b} q(t) x^{2}|x|^{2 \varepsilon} d t \tag{1.4}
\end{equation*}
$$

By combining (1.3) with (1.4) one gets
$\lambda_{n}(a, b):=\min _{x \in \Gamma_{n}} H(x)=H\left(x_{n}\right)=\frac{\varepsilon}{1+\varepsilon} \int_{a}^{b} q(t) x^{2+2 \varepsilon} d t=\frac{\varepsilon}{1+\varepsilon} \int_{a}^{b} x^{\prime 2}(t) d t$.
Thus the characteristic number $\lambda_{n}(a, b)$ is (up to a multiplicative constant) a minimal value of the functional $\int_{a}^{b} x^{\prime 2}(t) d t$ over the set of all solutions of the boundary value problem

$$
x^{\prime \prime}=-q(t)|x|^{2 \varepsilon} x, \quad x(a)=x(b)=0, \quad x(t) \text { has } n-1 \text { zeros in }(a, b)
$$

We will call the characteristic numbers λ_{n} by the Nehari's numbers and the respective solutions of the differential equation by the Nehari's solutions.

Remark 1. Nehari's numbers $\lambda_{n}(a, b)$ are uniquely defined by the interval (a, b). In the work [2] Nehari mentioned that the theory could be developed mush easier if the associated Nehari's solution be unique. It was shown theoretically in [3] that this is not the case. There exist equations of the type (1.1), which have more than one Nehari's solution for certain a, b and n.

2. Example: Nonuniqueness of the Nehari's Solutions

We construct the Emden - Fowler equation which possesses two Nehari's solutions.

In our considerations we use systematically the lemniscatic functions $\mathrm{sl} t$ and $\operatorname{cl} t$ which can be defined as solutions of the equation $x^{\prime \prime}=-2 x^{3}$, subject to the initial conditions $x(0)=0, \quad x^{\prime}(0)=1$ and $x(0)=1, \quad x^{\prime}(0)=0$ respectively. Both functions are periodic with a minimal period of $4 A$, where $A=\int_{0}^{1} \frac{d s}{\sqrt{1-s^{4}}}$. One may consult the paper [1] for more properties of these functions. In many respects they behave like usual trigonometric functions.

Equation. Consider equation

$$
\begin{equation*}
x^{\prime \prime}=-q(t) x^{3}, \quad t \in(-1,1) \tag{2.1}
\end{equation*}
$$

together with the boundary conditions

$$
\begin{equation*}
x(-1)=0, \quad x(1)=0, \quad x(t)>0, t \in(-1,1) . \tag{2.2}
\end{equation*}
$$

The coefficient $q(t)$ is constructed as follows. Let

$$
q(t)=\frac{2}{(\xi(t))^{6}}
$$

where

$$
\xi(t)=\left\{\begin{array}{l}
\xi_{1}(t),-1 \leq t \leq 0 \\
\xi_{2}(t), 0 \leq t \leq 1
\end{array}\right.
$$

and

$$
\begin{aligned}
& \xi_{1}(t)=h t+\eta, \quad-1 \leq t \leq 0 \\
& \xi_{2}(t)=-h t+\eta, \quad 0 \leq t \leq 1
\end{aligned}
$$

Thus $\xi(t)$ is a " Λ-shaped" piece-wise linear function, which depends on a positive valued parameter h, η depends on h as $\eta=h+1$.

Solutions. Our goal: we are looking for a solution (solutions) of the problem (2.1), (2.2).

Consider two problems

$$
\begin{align*}
& x_{1}^{\prime \prime}=-\frac{k}{(h t+\eta)^{6}} x_{1}^{3}, \quad x_{1}(-1)=0, x_{1}(0)=\tau, \quad x_{1}(t)>0, t \in(-1,0) ; \tag{2.3}\\
& x_{2}^{\prime \prime}=-\frac{k}{(-h t+\eta)^{6}} x_{2}^{3}, \quad x_{2}(0)=\tau, x_{2}(1)=0, x_{2}(t)>0, t \in(0,1),
\end{align*}
$$

where $\tau>0$. Let
$x_{1}(t)$ be a solution of the first equation of (2.3) in $[-1 ; 0]$;
$x_{2}(t)$ be a solution of the second equation of (2.3) in $[0 ; 1]$.

Then the function

$$
x(t)=\left\{\begin{array}{l}
x_{1}(t), \text { if }-1 \leq t \leq 0 \\
x_{2}(t), \text { if } 0 \leq t \leq 1
\end{array}\right.
$$

is a C^{2}-solution of the problem (2.1), (2.2) if additionally the smoothness condition

$$
x_{1}^{\prime}(0)=x_{2}^{\prime}(0)
$$

is satisfied. The problem (2.3) can be explicitly resolved as

$$
x_{1}\left(t, \beta_{1}\right)=\beta_{1}^{\frac{1}{2}}(h t+\eta) \cdot \operatorname{sl}\left(\beta_{1}^{\frac{1}{2}} \frac{t+1}{h t+\eta}\right)
$$

where

$$
\beta_{1}=x_{1}^{\prime}(-1)>0
$$

and

$$
x_{1}\left(0 ; \beta_{1}\right)=\tau
$$

The derivative is given by

$$
x_{1}^{\prime}\left(t ; \beta_{1}\right)=\beta_{1}^{\frac{1}{2}} h \cdot \mathrm{sl}\left(\beta_{1}^{\frac{1}{2}} \frac{t+1}{h t+\eta}\right)+\beta_{1} \frac{-h+\eta}{h t+\eta} \cdot \mathrm{sl}^{\prime}\left(\beta_{1}^{\frac{1}{2}} \frac{t+1}{h t+\eta}\right)
$$

Similar formulas are valid for $x_{2}(t)$. Notice that $x_{2}^{\prime}(1)=-\beta_{2}<0$. In order to get an explicit formula for a solution of the BVP $(2.1),(2.2)$ one have to solve a system of two equations with respect to $\left(\beta_{1}, \beta_{2}\right)$

$$
\begin{aligned}
& x_{1}\left(0 ; \beta_{1}\right)=x_{2}\left(0 ; \beta_{2}\right), \\
& x_{1}^{\prime}\left(0 ; \beta_{1}\right)=x_{2}^{\prime}\left(0 ; \beta_{2}\right) .
\end{aligned}
$$

This system after replacements and simplifications looks as

$$
\left\{\begin{array}{l}
\beta_{1}^{\frac{1}{2}} \cdot \mathrm{sl}\left(\frac{\beta_{1}^{\frac{1}{2}}}{\eta}\right)=\beta_{2}^{\frac{1}{2}} \cdot \mathrm{sl}\left(\frac{\beta_{2}^{\frac{1}{2}}}{\eta}\right) \\
\beta_{1}^{\frac{1}{2}} h \cdot \mathrm{sl}\left(\frac{\beta_{1}^{\frac{1}{2}}}{\eta}\right)+\frac{\beta_{1}}{\eta} \cdot \mathrm{sl}^{\prime}\left(\frac{\beta_{1}^{\frac{1}{2}}}{\eta}\right)=-\beta_{2}^{\frac{1}{2}} h \cdot \mathrm{sl}\left(\frac{\beta_{2}^{\frac{1}{2}}}{\eta}\right)-\frac{\beta_{2}}{\eta} \cdot \mathrm{sl}^{\prime}\left(\frac{\beta_{2}^{\frac{1}{2}}}{\eta}\right)
\end{array}\right.
$$

where $0<\frac{\beta_{1}^{\frac{1}{2}}}{\eta}, \frac{\beta_{2}^{\frac{1}{2}}}{\eta}<2 A$. In new variables $u:=\frac{\beta_{1}^{\frac{1}{2}}}{\eta}, \quad v:=\frac{\beta_{2}^{\frac{1}{2}}}{\eta}$ the system takes the form

$$
\left\{\begin{array}{l}
u \operatorname{sl} u=v \operatorname{sl} v, \quad 0<u, v<2 A \tag{2.4}\\
h u \operatorname{sl} u+u^{2} \operatorname{sl}^{\prime} u=-h v \operatorname{sl} v-v^{2} \operatorname{sl}^{\prime} v, \quad h>0 .
\end{array}\right.
$$

Notice that if a solution (\bar{u}, \bar{v}) of the system (2.4) exists, then a solution $x(t)$ of the BVP (2.1), (2.2) can be constructed such that

$$
x^{\prime}(-1)=\beta_{1}=\bar{u}^{2}(h+1)^{2}, \quad x^{\prime}(1)=-\beta_{2}=-\bar{v}^{2}(h+1)^{2} .
$$

Proposition 1. For h large the system (2.4) has exactly three solutions, which have the following characteristics.

1. There exists a unique symmetric solution $\left(u_{0}, v_{0}\right)$, that is, $u_{0}=v_{0}$. One has that $\left(u_{0}, v_{0}\right) \rightarrow(2 A, 2 A)$ as $h \rightarrow+\infty$.
2. There exists a unique solution $\left(u_{1}, v_{1}\right)$ in the triangle $\{0<u, v<2 A, v>$ $u)\}$ for h large. Moreover, $\left(u_{1}, v_{1}\right) \rightarrow(0,2 A)$ as $h \rightarrow+\infty$.
3. There exists a unique solution $\left(u_{2}, v_{2}\right)$ in the triangle $\{0<u, v<2 A, v<$ $u)\}$ for h large. Solutions $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are symmetric, that is, $\left(v_{2}, u_{2}\right)=\left(u_{1}, v_{1}\right)$.
Zeros of the functions $\Phi(u, v)=u \operatorname{sl} u-v \operatorname{sl} v$ and $\Psi(u, v)=h u$ sl $u+$ $u^{2} \mathrm{sl}^{\prime} u+h v \operatorname{sl} v+v^{2} \mathrm{sl}^{\prime} v$ in the square $Q=\{(u, v): 0 \leq u, v \leq 2 A\}$ for $h>1$ are depicted in the Figure 1. Notice that a set of zeros of Φ consists of the diagonal $u=v$ and two symmetric branches.

Figure 1. Zeros of $\Phi(u, v)$ (solid line) and $\Psi(u, v)$ (dashed line), $h=2$.

Nehari's numbers. The respective solutions of the boundary value problem (2.1), (2.2) look as shown in the picture.

Let $H=\frac{1}{2} \int_{-1}^{1} x^{\prime 2}(t) d t$. Denote by $H_{\text {sym }}$ and $H_{\text {asym }}$ the respective values of H for a symmetric solution (which is depicted by solid line), and for asymmetric solutions (depicted by dashed lines). Notice that $H(x)$ is the same for both asymmetric solutions. The values of $H_{\text {sym }}$ and $H_{\text {asym }}$ are

$$
\begin{aligned}
H_{\text {sym }} & =\frac{2}{3} u_{0}^{\frac{3}{2}}\left(\frac{u_{0}^{\frac{1}{2}}}{h+1}-\mathrm{sl}^{\prime}\left(\frac{u_{0}^{\frac{1}{2}}}{h+1}\right) \mathrm{sl}\left(\frac{u_{0}^{\frac{1}{2}}}{h+1}\right)\right) \\
H_{\text {asym }} & =\frac{1}{3} u_{1}^{\frac{3}{2}}\left(\frac{u_{1}^{\frac{1}{2}}}{h+1}-\mathrm{sl}^{\prime}\left(\frac{u_{1}^{\frac{1}{2}}}{h+1}\right) \mathrm{sl}\left(\frac{u_{1}^{\frac{1}{2}}}{h+1}\right)\right) \\
& +\frac{1}{3} v_{1}^{\frac{3}{2}}\left(\frac{v_{1}^{\frac{1}{2}}}{h+1}-\mathrm{sl}^{\prime}\left(\frac{v_{1}^{\frac{1}{2}}}{h+1}\right) \mathrm{sl}\left(\frac{v_{1}^{\frac{1}{2}}}{h+1}\right)\right)
\end{aligned}
$$

Proposition 2.

$$
\frac{H_{\text {sym }}}{H_{\text {asym }}} \xrightarrow[h \rightarrow+\infty]{ } 2
$$

Therefore for h large two asymmetric solutions are the Nehari's solutions.

References

[1] A. Gritsans and F. Sadyrbaev. Lemniscatic functions in the theory of the Emden-Fowler differential equation. Mathematics. differential equations (Univ. of Latvia, Institute of Math. and Comp. Sci.), 3(3), 5-27, 2003. (electr. version http://www.lumii.lv/sbornik1/Sbornik-2003-english.htm)
[2] Z. Nehari. Characteristic values associated with a class of nonlinear second-order differential equations. Acta Math., 105(3), 141 - 175, 1961.
[3] F. Sadyrbaev. On solutions of the Emden-Fowler type equation. Differential equations, 25(5), 799 - 805 (in Russian), 1989. English translation:F.Zh. Sadyrbaev, Solutions of the Emden-Fowler type equation., Differential Equations (ISSN:0012-2661, by Kluwer Academic/Plenum Publisher) 25, No.5, 560565 (1989)

