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Abstract. Consider the Emden – Fowler equation x′′ = −q(t)|x|2εx, ε > 0, in
the interval [a, b]. The coefficient q(t) is a positive valued continuous function. The
Nehari’s characteristic number λn associated with the Emden – Fowler equation
coincides with a minimal value of the functional ε

1+ε

R

b

a
x′2(t) dt over all solutions of

the boundary value problem

x
′′ = −q(t)|x|2ε

x, x(a) = x(b) = 0, x(t) has exactly n − 1 zeros in (a, b).

The respective solution is called by Nehari’s solution. We construct an example
which shows that the Nehari’s extremal problem may have more than a unique
solution.
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1. Nehari’s Solutions

Behavior of solutions to the Emden – Fowler type equation

x′′ = −q(t)|x|2εx, ε > 0, (1.1)

where q(t) is a positive valued continuous function, may be complicated if q(t)
is a non-monotone function.

Some regularity to the theory of the Emden – Fowler type equations of
the form (1.1) is brought by the so called Nehari’s solutions.

The Nehari’s theory applies to equations of the type (1.1).
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The general theorem by Nehari ([2, Theorem 3.2]) when adapted to the
case under consideration states that the extremal problem below has a solu-
tion.

Problem:

H(x) =

∫ b

a

[

x′2 − (1 + ε)−1q(t)x2+2ε
]

dt → inf , x ∈ Γn, (1.2)

where Γn consists of all functions x(t), which are continuous and piece-wise
continuously differentiable in [a, b]; there exist numbers aν such that

a = a0 < a1 < . . . < an = b;

x(a0) = 0 and for ν = 1, . . . , n, x(aν) = 0 but x 6≡ 0 in any [aν−1, aν ], and

∫ aν

aν−1

x′2(t) dt =

∫ aν

aν−1

q(t)x2|x|2ε dt. (1.3)

The respective extremal functions xn(t) are those solutions of equation
(1.1), which vanish at the points t = a and t = b, have exactly n − 1 zeros in
(a, b) and satisfy the condition

∫ b

a

x′2 dt =

∫ b

a

q(t)x2|x|2ε dt. (1.4)

By combining (1.3) with (1.4) one gets

λn(a, b) := min
x∈Γn

H(x) = H(xn) =
ε

1 + ε

∫ b

a

q(t)x2+2ε dt =
ε

1 + ε

∫ b

a

x′2(t) dt.

Thus the characteristic number λn(a, b) is (up to a multiplicative constant)

a minimal value of the functional
∫ b

a
x′2(t) dt over the set of all solutions of

the boundary value problem

x′′ = −q(t)|x|2εx, x(a) = x(b) = 0, x(t) has n − 1 zeros in (a, b).

We will call the characteristic numbers λn by the Nehari’s numbers and
the respective solutions of the differential equation by the Nehari’s solutions.

Remark 1. Nehari’s numbers λn(a, b) are uniquely defined by the interval
(a, b). In the work [2] Nehari mentioned that the theory could be developed
mush easier if the associated Nehari’s solution be unique. It was shown the-
oretically in [3] that this is not the case. There exist equations of the type
(1.1), which have more than one Nehari’s solution for certain a, b and n.

2. Example: Nonuniqueness of the Nehari’s Solutions

We construct the Emden - Fowler equation which possesses two Nehari’s so-
lutions.
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In our considerations we use systematically the lemniscatic functions sl t
and cl t which can be defined as solutions of the equation x′′ = −2x3, subject
to the initial conditions x(0) = 0, x′(0) = 1 and x(0) = 1, x′(0) = 0
respectively. Both functions are periodic with a minimal period of 4A, where

A =

1
∫

0

ds√
1 − s4

. One may consult the paper [1] for more properties of these

functions. In many respects they behave like usual trigonometric functions.

Equation. Consider equation

x′′ = −q(t) x3, t ∈ (−1, 1), (2.1)

together with the boundary conditions

x(−1) = 0, x(1) = 0, x(t) > 0, t ∈ (−1, 1). (2.2)

The coefficient q(t) is constructed as follows. Let

q(t) =
2

(

ξ(t)
)6

,

where

ξ(t) =

{

ξ1(t), −1 ≤ t ≤ 0,

ξ2(t), 0 ≤ t ≤ 1

and

ξ1(t) = ht + η, −1 ≤ t ≤ 0,

ξ2(t) = −ht + η, 0 ≤ t ≤ 1.

Thus ξ(t) is a “Λ-shaped” piece-wise linear function, which depends on a
positive valued parameter h, η depends on h as η = h + 1.

Solutions. Our goal: we are looking for a solution (solutions) of the prob-
lem (2.1), (2.2).

Consider two problems

x′′

1 = − k

(ht + η)6
x3

1, x1(−1) = 0, x1(0) = τ, x1(t) > 0, t ∈ (−1, 0);

(2.3)

x′′

2 = − k

(−ht + η)6
x3

2, x2(0) = τ, x2(1) = 0, x2(t) > 0, t ∈ (0, 1),

where τ > 0. Let

x1(t) be a solution of the first equation of (2.3) in [−1; 0];
x2(t) be a solution of the second equation of (2.3) in [0; 1].
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Then the function

x(t) =

{

x1(t), if −1 ≤ t ≤ 0,

x2(t), if 0 ≤ t ≤ 1

is a C2-solution of the problem (2.1), (2.2) if additionally the smoothness
condition

x′

1(0) = x′

2(0)

is satisfied. The problem (2.3) can be explicitly resolved as

x1(t, β1) = β
1

2

1 (ht + η) · sl
(

β
1

2

1

t + 1

ht + η

)

,

where
β1 = x′

1(−1) > 0

and
x1(0; β1) = τ.

The derivative is given by

x′

1(t; β1) = β
1

2

1 h · sl
(

β
1

2

1

t + 1

ht + η

)

+ β1

−h + η

ht + η
· sl′

(

β
1

2

1

t + 1

ht + η

)

.

Similar formulas are valid for x2(t). Notice that x′

2(1) = −β2 < 0. In order
to get an explicit formula for a solution of the BVP (2.1), (2.2) one have to
solve a system of two equations with respect to (β1, β2)

x1(0; β1) = x2(0; β2),

x′

1(0; β1) = x′

2(0; β2).

This system after replacements and simplifications looks as























β
1

2

1 · sl
(

β
1

2

1

η

)

= β
1

2

2 · sl
(

β
1

2

2

η

)

,

β
1

2

1 h · sl
(

β
1

2

1

η

)

+
β1

η
· sl′

(

β
1

2

1

η

)

= −β
1

2

2 h · sl
(

β
1

2

2

η

)

− β2

η
· sl′

(

β
1

2

2

η

)

,

where 0 <
β

1

2

1

η
,

β
1

2

2

η
< 2A. In new variables u :=

β
1

2

1

η
, v :=

β
1

2

2

η
the system

takes the form
{

u sl u = v sl v, 0 < u, v < 2A,

hu slu + u2 sl′ u = −hv sl v − v2 sl′ v, h > 0.
(2.4)

Notice that if a solution (ū, v̄) of the system (2.4) exists, then a solution x(t)
of the BVP (2.1), (2.2) can be constructed such that

x′(−1) = β1 = ū2(h + 1)2, x′(1) = −β2 = −v̄2(h + 1)2.



Characteristic Numbers of Emden – Fowler Equations 407

Proposition 1. For h large the system (2.4) has exactly three solutions, which

have the following characteristics.

1. There exists a unique symmetric solution (u0, v0), that is, u0 = v0. One

has that (u0, v0) → (2A, 2A) as h → +∞.

2. There exists a unique solution (u1, v1) in the triangle {0 < u, v < 2A, v >

u)} for h large. Moreover, (u1, v1) → (0, 2A) as h → +∞.

3. There exists a unique solution (u2, v2) in the triangle {0 < u, v < 2A, v <

u)} for h large. Solutions (u1, v1) and (u2, v2) are symmetric, that is,

(v2, u2) = (u1, v1).

Zeros of the functions Φ(u, v) = u slu − v sl v and Ψ(u, v) = hu sl u +
u2 sl′ u+hv sl v + v2 sl′ v in the square Q = {(u, v) : 0 ≤ u, v ≤ 2A} for h > 1
are depicted in the Figure 1. Notice that a set of zeros of Φ consists of the
diagonal u = v and two symmetric branches.
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Figure 1. Zeros of Φ(u, v) (solid line) and Ψ(u, v) (dashed line), h = 2.

Nehari’s numbers. The respective solutions of the boundary value prob-
lem (2.1), (2.2) look as shown in the picture.
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Let H = 1

2

1
∫

−1

x′2(t)dt. Denote by Hsym and Hasym the respective values

of H for a symmetric solution (which is depicted by solid line), and for asym-
metric solutions (depicted by dashed lines). Notice that H(x) is the same for
both asymmetric solutions. The values of Hsym and Hasym are
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Hsym = 2

3
u

3

2

0

(

u
1

2

0

h+1
− sl′

(

u
1

2

0

h+1

)

sl

(

u
1

2

0

h+1

))

,

Hasym = 1

3
u

3

2

1

(

u
1

2

1

h+1
− sl′

(

u
1

2

1

h+1

)

sl

(

u
1

2

1

h+1

))

+ 1

3
v

3

2

1

(

v
1

2

1

h+1
− sl′

(

v
1

2

1

h+1

)

sl

(

v
1

2

1

h+1

))

.

Proposition 2.
Hsym

Hasym

−−−−−→
h→+∞

2.

Therefore for h large two asymmetric solutions are the Nehari’s solutions.
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