
Mathematical Modelling and Analysis 2005. Pages 525–533

Proceedings of the 10th International Conference MMA2005&CMAM2, Trakai

c© 2005 Technika ISBN 9986-05-924-0

AN EVALUATION OF THE

PERFORMANCE OF VGTU PC CLUSTER

V. STARIKOVIČIUS, R. ČIEGIS and G. ŠILKO

Vilnius Gediminas Technical University

Saulėtekio al. 11, LT-10223 Vilnius, Lithuania

E-mail: rc@fm.vtu.lt; vs@sc.vtu.lt; gs@sc.vtu.lt

Abstract. In this work we have tested the performance of VGTU PC cluster
”Vilkas” in order to identify the main characteristics of the system and to find
for what type of computational jobs the cluster is well adopted. HPC Challenge
suite of benchmarks was used for that purpose. The results of tests are presented
and discussed. We analyze the influence of different compilers and hyper-threading
technology on the performance of the cluster. Some recommendations for future
upgrade of the system are given.

Key words: PC clusters, evaluation of performance, benchmarks

1. Introduction

The availability of increasingly powerful commodity microprocessors and high-
speed networks is making clusters of computers the fastest growing approach
for building cost-effective high-performance parallel computing platforms.
Since 2000, the number of clusters in the Top 500 list (http://www.top500.org)
has grown from 11 (2,2%) to 304 (60,8%) – and this is only in the richest part
of HPC world.

PC clusters are built from commodity-of-the-shelf personal computers con-
nected together through some fast but standard network using open source
software. Thus PC clusters are a good alternative to specialized supercom-
puters when we consider the price to performance ratio. For many sites PC
clusters offer affordable tool for supercomputing.

The main drawback of PC clusters is a reduced communication capacity
between processors. Thus developing parallel algorithms for such systems we
should take into account the disbalance in computational and communication
powers of PC clusters. Therefore it is important to test the performance of
the cluster in use and to define for what type of computational jobs it is well
adapted (see, e.g. [1]).

526 V. Starikovičius, R. Čiegis, G. Šilko

Two suites of benchmarks are most popular for testing the performance
of parallel computers. HPC Challenge benchmark suite was released by the
DARPA HPCS program [6]. It provides seven different benchmarks, that
bound the performance of many real applications as a function of memory
access characteristics. The NAS benchmark suite comprises five kernels and
three applications, representing a specific part of CFD applications [2]. In
this paper we restrict to the analysis of results obtained for HPC Challenge
benchmark.

Cluster configuration

Vilkas is a cluster build from 16 personal computers at Vilnius Gediminas
technical university. Each node has Intel Pentium 4 processor running at 3.2
GHz with 16 KB L1 cache and 1 MB of L2 cache, 1 GB of DDR-RAM (Double
Data Rate RAM), 800 MHz Front Side Bus, and integrated Intel Pro/1000 CT
Gigabit Ethernet card. Processor supports Intel Hyper-Threading technology.
Intel’s Hyper-Threading technology makes a single physical processor appear
as two logical processors. All computers are connected together with Gigabit
Ethernet switch.

Cluster was installed using ”Rocks Cluster Distribution” v 3.3.0 (Makalu).
It is based on RedHat Linux Enterprise 3.0 with kernel version 2.4.21-
20. All installed software is free and public except for the commercial Intel
compilers (Fortran and C/C++).

The benchmark programs were compiled with GNU or Intel compilers and
LAM-MPI implementation of MPI [3]. A more detailed information about
Vilkas cluster is presented at http://vilkas.vtu.lt.

The rest of the paper is organized as follows. In Section 2, we describe
the benchmarks from HPC Challenge suite and present the performance re-
sults obtained on our cluster together with their analysis. Finally, Section 3
concludes the paper.

2. HPC Challenge Benchmark Suite

A list of Top 500 parallel computers is compiled twice per year by using results
of High Performance Linpack (HPL) benchmark, which measures the floating
point rate of execution for solving a linear system of equations of order n.

The operation count for Linpack test is
2

3
n3 +

1

2
n2, i.e. one order higher than

the number of data involved in communication. Such test is useful for testing
the peak performance rate of the parallel system, but many real applications
have memory access patterns much more challenging than HPL algorithm.

Thus the HPC Challenge benchmark suite was released by the DARPA
HPCS program [6]. It provides seven different benchmarks that bound the
performance of many real applications as a function of memory access char-
acteristics [5]. This suite stresses not only processors, but also the memory

An Evaluation of the Performance of VGTU PC Cluster 527

system and the interconnect. It gives wider range of metrics for comparison of
different HPC architectures and for evaluation of their suitability for specific
real-world applications.

2.1. HPL benchmark

HPL solves a system of linear equations of order n:

AX = F, A ∈ R
n×n, X, F ∈ R

n

by computing LU factorization with row partial pivoting. This test stresses
the floating point performance of a parallel system. However, a system’s com-
munication bandwidth also significantly influences the overall Linpack perfor-
mance.

To understand better the impact of different compilers and Hyper-Threa-
ding on general performance of cluster, we have tested first a single node.
Figure 1 shows the HPL performance results on a single node running code
compiled with different compilers with different number of processes.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
2.5

3

3.5

4

4.5

5
HPL performance results on a single node of Vilkas cluster

n − problem size

G
flo

p/
s

Intel compiler (1 process)
Intel compiler with HT (1x2 processes)
GNU compiler (1 process)
GNU compiler with HT (1x2 processes)

4,775
4,648

4,051

Figure 1. The HPL performance results on a single node.

In each case we have conducted a series of HPL runs from small problem
size to large. As it is known for Linpack test, the larger size of the problem
specified for execution, the better is the performance of the system in all
cases. The results show that utilization of two logical processors given by
Hyper-Threading technology by running the HPL benchmark with 2 processes
decreases the performance of the single node around 5% for Intel compiler and
around 13% for GNU compiler.

Such a good performance can be explained by the fact that the HPL bench-
mark has quit simple flow of instructions, which keeps processor’s floating-

528 V. Starikovičius, R. Čiegis, G. Šilko

point functional units including the SSE2 almost fully utilized during the exe-
cution. This leaves very little room for improving the Linpack performance by
using 2 processes with Hyper-Threading to increase CPUs’ resources utiliza-
tion. On the contrary, besides the overhead of running two processes instead
of one, those two processes can start compete for processor resources slow-
ing each other [4]. It seems that Intel compiler deals with that danger better
than GNU compiler, what is to be expected obviously. However, because of
discussed specifics of HPL, Intel compiler was only around 2,5% better than
GNU reaching 74.6% of theoretical peak performance of single node (which is
equal to 2× 3.2 = 6.4 Gflop/s due to SSE2).

Next, we have performed similar series of HPL runs on 16 nodes. The
results are presented in Figure 2. They show that the main trend has been
changed. Doubling of processes using the Hyper-Threading improves the per-
formance of the cluster. The obvious explanation is that now processes have
to perform communications and sometimes wait for the data. This creates
the possibility for overlapping of some communications by computations by
running two processes (threads) on a single physical processor with enabled
Hyper-Threading. Such overlapping will increase the utilization rate of the
processors’ execution resources. Therefore, the total performance of the whole
cluster can be improved.

0 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000 43000
10

20

30

40

50

60

70
HPL performance results on a 16−node Vilkas cluster

n − problem size

G
flo

p/
s

Intel compiler with HT (16x2 processes)
Intel compiler (16 processes)
GNU compiler (16 processes)
GNU compiler with HT (16x2 processes)

64,92

59,31

64,32

58,06

Figure 2. The HPL performance results on 16 nodes.

Again, the results show that the code produced by the Intel compiler is
superior than the code produced by the free GNU compiler. However, ap-
proaching the maximal problem size, this positive effect of Hyper-Threading
seems to be compensated by the negative effects (for example, contention for
the memory).

An Evaluation of the Performance of VGTU PC Cluster 529

Top performance with Intel compiler was around 8.6% better than with
GNU compiler reaching 63.4% of theoretical peak performance of 16-node
cluster (102.4 Gflop/s). Reaching 60% of theoretical peak performance is es-
timated as a very good result for a cluster [4].

2.2. DGEMM benchmark

This benchmark measures the floating point rate of execution of double pre-
cision real matrix-matrix multiplication. The exact operation performed is

C = βC + αAB, A,B,C ∈ R
n×n, α, β ∈ R.

The operation count for such operation is 2n3. The benchmark is run in em-
barrassingly parallel manner, when all nodes perform multiplication indepen-
dently and at the same time, i.e. without any communication (but shared-
memory effects might occur on SMP nodes). The arithmetic average rate is
reported. Thus this test stresses the floating point performance of separate
nodes of a parallel system.

The result obtained with Intel compiler is 5.182 Gflop/s (or 82.912 Gflop/s
for a whole cluster of 16 processors), and with GNU compiler - 5.017 Gflop/s.
It is clear that DGEMM has even simpler work flow than HPL and higher
utilization of SSE2 units, therefore the top performance is even closer to the
theoretical peak performance of a single node, i.e. 81.0%. The difference be-
tween two compilers is 3.2%.

2.3. STREAM benchmark

STREAM is a simple synthetic benchmark that measures sustainable memory
bandwidth (in Gbytes/s) and computation rate for four simple vector kernels:

C ← A, B ← αC, C ← A + B, A← B + αC,

where A, B, C ∈ R
n, α ∈ R. It is implemented in a very straightforward way

without sophisticated optimizations. STREAM thereby produces results that
correspond to memory bandwidth expected from an ordinary user application.
It is run in embarrassingly parallel manner - all computational nodes perform
the benchmark at the same time, the arithmetic average rate is reported.

The obtained results show no difference between compilers. Benchmark
version included in HPCC Suite gives to the compiler even less control (and
possibilities to optimization) than original one [5]. Results presented in Table 1
are better or comparable with results shown by many systems based on Intel
Xeon, Intel Itanium 2, AMD Opteron processors (see [6], where extensive
results for different computer architectures are presented). However, Pentium
4 on 800 MHz FSB with DDR400 memory (theoretical peak bandwidth 6.4
Gbytes/s) cannot even compare with Cray and NEC systems.

530 V. Starikovičius, R. Čiegis, G. Šilko

Table 1. STREAM benchmark: memory bandwidth results (in Gbytes/s).

Copy Scale Add Triad

2.598 2.562 3.068 3.206

2.4. Latency and bandwidth benchmark

This benchmark measures latency and bandwidth of two different communi-
cation patterns. First, it measures the single-process-pair latency and band-
width. The benchmark is designed to measure the performance of system
interconnection network. So, different processes are assigned to different pro-
cessors. Ping-pong communication is used on a pair of processes. Many differ-
ent pairs are investigated and the maximal, minimal and the average values of
latency (in usec = micro second = 10−6 second) and bandwidth (in Gbytes/s)
over all pairs are reported. This test uses MPI standard blocking send and
receive routines.

Next, the benchmark measures the parallel all-processes-in-a-ring latency
and bandwidth. Each process sends and receives a message from its left and
right neighbours in parallel. Two types of rings are investigated: naturally
ordered ring, which is ordered by the process ranks (or MPI ranks), and ran-
domly ordered ring. The communication is implemented with MPI standard
non-blocking receive/send and with MPI Sendrecv in both directions in the
ring. The fastest result is used. Average values of latency and bandwidth per
process are reported. The results of our measurements are in the Table 2.

Table 2. Latency (in usec) and bandwidth (in GBytes/s) benchmark results.

Parameter Ping-pong Ping-pong Ping-pong Nat. ordered Rand. ordered
Min Max Average Ring Ring

Latency 61.438 125.131 80.232 186.307 188.475

Bandwidth 0.050741 0.097487 0.063572 0.049580 0.046994

Comparison with results of parallel systems presented in [6] shows a quit
poor performance of our interconnect. It is clear that for clusters it is difficult
to compete with specially build parallel architectures of IBM with High Per-
formance Switch, Cray with 2 or 3D torus, or SGI with Numalink. We note
that some interconnects of clusters such as Myrinet or Infiniband also show
very good results. However, they are in the different price level comparing
with Gigabit Ethernet.

Our Gigabit Ethernet interconnect with economy switch (D-Link DGS
1224T) shows results comparable in the bandwidth with the results of clusters
with Gigabit Ethernet [6]. The bandwidth of randomly ordered ring is even

An Evaluation of the Performance of VGTU PC Cluster 531

larger. However, this is most probably due to smaller number of nodes in our
cluster. The noticeable difference is in the decrease of bandwidth between
randomly and naturally ordered rings: 5.2% in our case and 33.4%, 59.9% for
Cisco and HP switches accordingly. However, our latencies are up to 4 times
larger [6]. Such latency will create a performance bottleneck on our cluster for
applications with a large number of small communications.

2.5. PTRANS benchmark

PTRANS implements a parallel matrix transpose. The exact operation per-
formed is

A← AT + B,

where A ∈ R
n×n is random n×n matrix, AT is its transpose, and B is another

random matrix. The number of basic operations is the same as the number
of transferred data. Matrices are stored using two-dimensional block-cyclic
distribution.

During parallel execution of this kernel, pairs of processors exchange large
messages simultaneously. It returns the data transfer rate (in Gbyte/s) which
is calculated by dividing the size of n2 matrix entries by the time it took to
perform the transpose. This benchmark is a useful test of the total communi-
cations capacity of the system interconnect.

The results of this benchmark depend on matrix size n and block size r. As
it can be expected, no noticeable influence of the compiler was observed. With
n = 21500 (close to the maximal available memory) and r = 140, we have
obtained 0.530 Gbyte/s or 0.0331 Gbyte/s per process. These results are com-
parable with the results of systems with Gigabit Ethernet interconnects [6].
Among supercomputers the leaders are Cray (874.899 and 0.168 Gbyte/s) and
NEC (25.183 and 4.197083 Gbyte/s) systems.

Interestingly, when we doubled the number of processes using Hyper-
Threading, the overall performance has improved till 0.90675 Gbyte/s with
only slight decrease of the data transfer rate per process - 0.0283 Gbyte/s. The
amount of data sent over the network in this case is the same as in the first,
the number of communications is bigger, and some data have to be copied
locally using shared memory. However, it seems that Hyper-Threading tech-
nology was able to schedule communications in such a way that some useful
work was done by one part of processes when the rest of them were waiting
for the data.

2.6. RandomAccess benchmark

RandomAccess measures the rate at which the computer can update pseudo-
random locations of its memory - this rate is expressed in billions (giga) of
updates per second (GUP/s). This benchmark has three versions. The single
node version runs the code locally on a randomly chosen processor. No explicit
communication is performed and so the performance of the local memory sub-
system is revealed. The embarrassingly parallel version runs the code locally

532 V. Starikovičius, R. Čiegis, G. Šilko

on each node. No explicit communication is performed (but shared-memory
effects might occur on SMP nodes). GUP/s per process are returned. And
finally, the MPI version generates the updating sequence locally and then dis-
tributes it using all-to-all collective communication. This version of the test
evaluates communication subsystem also.

It is clear from the description of the benchmark that it is difficult to
expect a good performance of our cluster for the global (MPI) version of this
test, because it requires a big number of small communications. Performance
results of embarrassingly parallel (EP) and MPI versions are shown in Table 3.

Table 3. RandomAccess benchmark results (in GUP/s).

compiler EP version MPI version

Intel 0.00691798 0.00067087

GNU 0.00621339 0.00063834

However, our global results are almost identical to results reported by the
clusters with Gigabit Ethernet interconnects [6]. Our local results (with EP
version) show that the performance of Pentium 4 node is on the level of nodes
with Intel Xeon, Intel Itanium 2, AMD Opteron processors. For this test the
difference between compilers can be observed: 10.2% for EP version and 4.9%
for MPI version.

2.7. FFT benchmark

FFT measures the floating point rate of execution of double precision com-
plex one-dimensional Discrete Fourier Transform. This benchmark also has
three versions. The single node version runs the code locally on a randomly
chosen processor. Embarrassingly Parallel version performs the same test but
in embarrassingly parallel fashion - the code is run locally on each processor.
No explicit communication is performed (but shared-memory effects might
occur when several processes run on the same node). Gflop/s per process are
returned. Global (MPI) version performs the same test but across the entire
system by distributing the input vector in block fashion across all the nodes.
MPI version returns the global rate in Gflop/s. The results obtained on our
cluster are shown in Table 4.

The difference between compilers is 7.2% for local (EP) version and 2.8%
for global (MPI) version. The doubling of processes using Hyper-Threading
improves the performance of our cluster. In general, our FFT performance
results are also on the level of clusters reported in [6].

An Evaluation of the Performance of VGTU PC Cluster 533

Table 4. FFT benchmark performance results (in Gflop/s).

Compiler EP version MPI version EP with HT MPI with HT

Intel 0.510068 1.8737 0.308627 2.08884

GNU 0.473133 1.8216 0.260984 1.90465

3. Conclusions

The results showed by Vilkas cluster are on the level of results reported by the
other clusters with similar interconnect (Gigabit Ethernet). We expect a good
performance on our cluster of applications with the amount of computations
much bigger then the number of data which must be send. More precisely,
the number of communications and not their size will create the problems
due to the big latency time on our cluster. Hyper-Threading can improve
the performance of our cluster for applications with considerable amount of
communications by increasing the utilization of processors’ execution units.
And finally, we plan to extend this work with the results of NAS Parallel
Benchmarks and their analysis.

References

[1] K.-J. Andersson, D. Aronsson and P. Karlsson. An evaluation of the system
performance of a Beowulf cluster. Technical Report 2001-4, LIU, Sweeden, 2001.

[2] NAS Parallel Benchmarks. http://www.nas.nasa.gov/software/npb/.
[3] W. Gropp, E. Lusk and A. Skjellum. Using MPI: portable parallel programming

with the message-passing interface. The MIT Press, Cambridge, Massachusetts,
London, 1995.

[4] T. Leng, R. Ali, J. Hsieh, V. Mashayekhi and R. Rooholamini. An empirical
study of hyper-threading in High Performance Computing clusters. Technical
report, 2002.

[5] P. Luszczek, J.-J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas, J. Kepner,
J. McCalpin, D. Bailey and D. Takahashi. Introduction to the HPC Challenge
benchmark suite. Technical report, 2005.

[6] HPC Challenge Benchmark Suite. http://icl.cs.utk.edu/hpcc/.

