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Abstract. An accessible overview will be presented of some rather technical re-
sults from two recent papers of the authors [3, 4] that derive pointwise bounds on
derivatives of solutions to singularly perturbed elliptic boundary value problems
posed in two dimensions. The dependence of these bounds on the regularity and
compatibility of the data is our main interest. In particular we focus on the effects
of data incompatibility at the corners when the domain is the unit square and of a
discontinuity of some (possibly zero-order) derivative of the solution at a point on
the inflow boundary. The bounds show the effects of a parabolic boundary or inte-
rior layer in the solution. The results should be useful in devising mesh refinement
strategies for a numerical solution of these problems.
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1. Introduction

Singularly perturbed convection-diffusion problems arise in many applica-
tions. Their solutions typically exhibit boundary and interior layers and the
asymptotic nature of these layers has been widely studied; see the references
in [7]. The numerical solution of convection-diffusion problems is also the sub-
ject of intensive investigation — an introduction is given in [10] while [7] gives
an extensive overview.
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To derive sharp error bounds in the rigorous analysis of a numerical
method for these problems one needs precise information on how derivatives
of the solution of the convection-diffusion problem depend on the singular
perturbation parameter, but in general this information is not furnished by
asymptotic expansions. Such a priori bounds on derivatives are well-known in
singularly perturbed 2-point boundary value problems [7] but their derivation
for problems posed in two dimensions is more difficult.

For elliptic convection-diffusion problems on bounded domains in R
2, es-

timates of global Sobolev norms of u and some pointwise bounds are given in
[1]. Problems posed on the unit square are considered in the following papers:

• in [5] pointwise derivative bounds are proved for a problem whose solution
u has exponential boundary layers along two sides of the square;

• [8] is mainly concerned with asymptotic expansions for a problem on the
unit square, but some derivative bounds are proved that exhibit a parabolic
boundary layer in u;

• the derivative bounds in [6] involve both exponential and parabolic bound-
ary layers but some of the arguments are incomplete.

Section 2 below will present a simplified version of the results from [4] where
we consider a unit square convection-diffusion problem whose solution has
boundary and interior layers and derive derivative bounds via a detailed anal-
ysis related to that of [6]; furthermore, we also consider the effects of incom-
patibilities in the problem data at the corners of the square.

None of the above papers gives any information about the pointwise behav-
ior of the solution u near interior layers. This question is tackled in [9, Chapter
IV], but many details are omitted and it is difficult to establish the precise
assumptions made. In the present paper Section 3 discusses the pointwise
derivative bounds from [3], where we study a convection-diffusion problem on
a half-plane whose boundary data (or some derivative of it) has a discontinu-
ity at one point, resulting in an interior layer along the subcharacteristic that
emanates from that point.

Remark. The singular perturbation parameter will be denoted by ε; it lies
in the interval (0, 1]. We use C to denote a generic positive constant that in
particular is independent of ε and of the location of the point (x, y) ∈ Q.

2. Unit Square Problem

Let Q be the open unit square in R
2, with boundary ∂Q. Let u be the solution

of the elliptic convection-diffusion problem

−ε∆u + pux + qu = f in Q, (2.1a)

u = g on ∂Q, (2.1b)

where p and q are positive constants and g = (gs, ge, gn, gw) where these
are respectively the restriction of g to the south, east, north and west sides
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of ∂Q. Assume that f ∈ C2`,α(Q̄) and gw, ge, gs, gn ∈ C2`,α[0, 1] for some
non-negative integer ` and α ∈ (0, 1), where C2`,α is the usual Hölder space.

In [4] we allow the possibility that g is discontinuous at the corners of
∂Q or that some higher-order compatibility condition may fail; see [2] for
a discussion of compatibility conditions for (2.1). Pointwise bounds on the
derivatives of u are then proved under the hypothesis of an arbitrary but
fixed degree of compatibility at each corner.

Hypothesis 1. For brevity here we shall assume that the function g is dis-
continuous at each corner, i.e. that one has no compatibility in the data.

In (2.1) the flow is parallel to the x-axis, from left to right, so from asymp-
totic considerations one typically expects the following behaviour in the so-
lution u: an exponential boundary layer at the outflow boundary x = 1, and
parabolic boundary layers along the characteristic boundaries y = 0 and y = 1.
(For an introductory discussion of these phenomena see [10]; more details are
given in [7].) Nevertheless pointwise bounds confirming these expectations
were first proved only recently, in [4]. And there is a further complication: in
non-singularly perturbed problems the incompatibility of the data is known
to yield a certain singularity at each corner, but how will the presence of the
small parameter ε affect this singularity?

Let (x, y) ∈ Q. Set rij = distance from (x, y) to (i, j) for i, j = 0, 1. Set
r = min{r00, r01, r10, r11}, so r is the distance from (x, y) to the nearest corner
of ∂Q. Let m and n be non-negative integers with m + n > 0, 2m + n ≤ 2`

and m + n ≤ 2` − 2. Let n̄ be the smallest even integer that satisfies n̄ ≥ n.
The following derivative bounds are proved in [4]. They depend in nature

on whether or not one is near a corner of ∂Q. In the theorem the inflow
corners are (0,0) and (0,1) while the outflow corners are (1,0) and (1,1).

Theorem 1.

(i) Suppose that r ≤ ε so (x, y) is close to a corner. Then

|Dm
x Dn

y u(x, y)| ≤ Cr−m−n near inflow corners,

|Dm
x Dn

y u(x, y)| ≤ Cε−2m−n̄r−m−n near outflow corners.

(ii) Suppose that r > ε so (x, y) is not close to a corner. Choose a constant β

such that 0 < β < min{√q, p}. Then

|Dm
x Dn

y u(x, y)| ≤ C
{

1 + ε−me−p(1−x)/ε

+ ε−n/2
[

r
−m−n/2
00 e−βy/

√
ε + r

−m−n/2
01 e−β(1−y)/

√
ε
]

+ ε−2m−n̄ε−n/2
[

1 + r
−m−n/2
10

]

e−p(1−x)/εe−βy/
√

ε

+ε−2m−n̄ε−n/2
[

1 + r
−m−n/2
11

]

e−p(1−x)/εe−β(1−y)/
√

ε
}

.

The bounds of part (i) show that near an inflow corner the small parameter
ε has no effect: one simply obtains the classical singularity in the solution u.
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But near an outflow corner on the other hand, the smallness of ε amplifies the
classical singularity. A heuristic explanation for this dichotomy is that at the
inflow corners the flow points away from the corner and consequently induces
no layer effect, but the opposite is true at the outflow corners.

The bound of part (ii), which holds sway on most of Q, is also interesting.
The terms 1 + ε−me−p(1−x)/ε are to be expected: they represent the effect of
the reduced solution of (2.1) on Q and the one-dimensional-like exponential
layer at the outflow boundary x = 1. The factors depending on n in the term

ε−n/2r
−m−n/2
00 e−βy/

√
ε describe the parabolic boundary layer along the side

y = 0, while the factor r−m
00 , which is influential only in a neighbourhood of

the corner (0,0), means that this bound blends into the bound of part (i) as r

nears (0,0). The term ε−n/2r
−m−n/2
01 e−β(1−y)/

√
ε is similarly associated with

the parabolic boundary layer along the side y = 1. The remaining terms in the
estimate of (ii) are corner layers at (1,0) and (1,1) that come from the inter-
action between the exponential outflow layer along x = 1 and the parabolic
layers just mentioned; observe the same multiplicative factor ε−2m−n̄ as in
the outflow corners of part (i).

The bounds of parts (i) and (ii) are equivalent when r = ε in both.

Proof. (Outline) The solution u is decomposed as a sum of terms that bear
a superficial resemblance to a standard asymptotic expansion (e.g. one term
corresponds to the reduced solution, another to the exponential outflow layer,
etc.), but each term is defined as the solution to an elliptic boundary-value
problem in a half-plane or quarter-plane. The solutions of the quarter-plane
problems are in turn decomposed as sums of solutions to half-plane problems.
The derivatives of the solutions to most of these elliptic problems are bounded
using maximum principles and barrier functions combined with induction. The
exception is the elliptic problem associated with each corner singularity, where
we use an explicit representation of the solution (cf. (3.2) below) — this is
available since the differential operator has constant coefficients. By a lengthy
calculation one can bound the pure y-derivatives in this problem, then an
inductive argument yields bounds on the remaining derivatives. �

3. Half-Plane Problem

The second problem that we consider is simpler insofar as the singular pertur-
bation parameter gives rise to only one phenomenon — a parabolic interior
layer — in the solution u, but such layers are tricky to analyse.

Let R
2
+ denote the right-hand half-plane. Consider the problem

Lu := −ε∆u + p1ux + p2uy + qu = f for (x, y) ∈ R
2
+, (3.1a)

u(0, y) = h(y) for y ∈ R. (3.1b)

Here p1 and q are positive constants, while p2 is any constant (it may even be
zero). Assume that h ∈ C∞[0,∞) and h has a smooth extension from (−∞, 0)
to (−∞, 0], but h(y) or one of its derivatives may have a jump discontinuity



Bounds on Solutions of Elliptic Convection-Diffusion Problems 269

at y = 0. This discontinuity will induce a characteristic interior layer in u

along the subcharacteristic passing through (0,0).
An integer-valued parameter ν ≥ −1 is used to indicate the degree of

discontinuity that h(y) has at y = 0: ν = −1 means that h(+0) 6= h(−0),
while ν ≥ 0 means that

Dkh(+0) = Dkh(−0) for k = 0, · · · , ν.

Let α = [p1, p2] be the subcharacteristic direction. Set β = [−p2, p1] so
β⊥α is the crosswind direction. It is more convenient in the analysis of this
problem to examine directional derivatives Dα and Dβ with respect to α and
β than the derivatives Dx and Dy.

Let m and n be non-negative integers. Let f ∈ Hm+n+2(R2
+), where Hk(·)

is the usual Sobolev norm. The following two theorems are proved in [3].

Theorem 2. (bounds on low-order derivatives) If h ∈ Hm+n+1(−∞, 0), h ∈
Hm+n+1(0,∞) and n ≤ ν, then |Dm

α Dn
βu(x, y)| ≤ C.

Proof. (Outline) Let F be an extension of f to R
2. Consider LU = F in R

2.
From Sobolev and energy inequalities one has

|Dm
α Dn

βU(x, y)| ≤ ‖U‖Hm+n+2(R2) ≤ C‖F‖Hm+n+2(R2) ≤ C‖f‖Hm+n+2(R2
+

).

This reduces (3.1) to the case f ≡ 0. Now invoke a Fourier transform in
y, solve the resulting initial-value problem, then use Parseval’s formula and
Sobolev’s inequality in one dimension to bound the desired derivatives. �

Theorem 2 confirms the intuitive expectations that derivatives Dm
α along

the subcharacteristic should not depend on ε, and when the order of the
crosswind derivative Dn

β is at most the degree of discontinuity, no layer is
visible.

Theorem 3. (bounds on higher-order derivatives) Let f ∈ Hm+n+2(R2
+). If

h ∈ H2m+n+1(−∞, 0), h ∈ H2m+n+1(0,∞) and ν < n, then

|Dm
α Dn

βu(x, y)| ≤











C(1 + r−m−n+ν+1) for r ≤ 2ε,

C
[

1 + ε(−n+ν+1)/2r−m+(−n+ν+1)/2e−cd2/ε

+r−m−n+ν+1e−cr/ε
]

for r ≥ 2ε,

where d denotes the perpendicular distance from (x, y) to the subcharacteristic
p1y = p2x passing through (0,0).

Proof. (Outline) For x > 0 one has

u(x, y) =
x

2πε

∫ ∞

0

h(t)ζ1(t)
1

r1(t)
K1

(

κr1(t)

2ε

)

dt, (3.2)

where r1(t) =
√

x2 + (y − t)2, the function K1(·) is a modified Bessel function

of the second kind, κ =
√

p2
1 + p2

2 + 4εq and ζ1(t) = e(p1x+p2(y−t))/(2ε). For the
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pure crosswind derivatives Dn
βu(x, y), differentiate this formula. Then bounds

on the other derivatives can be deduced from (3.1a) by an inductive argument.
�

As in Theorem 1 we see that the classical singularity of the solution u

at (0,0) is unaffected by the singularly perturbed nature of the problem. As
one moves away from (0,0), this singularity dies off rapidly because of the
factor e−cr/ε (so the smallness of ε actually helps to smooth the solution) but
simultaneously a parabolic interior layer appears, as indicated by the factor
ε(−n+ν+1)/2e−cd2/ε.
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