
Mathematical Modelling and Analysis 2005. Pages 381–388

Proceedings of the 10th International Conference MMA2005&CMAM2, Trakai

c© 2005 Technika ISBN 9986-05-924-0

NONLINEAR DIFFUSION PROBLEMS IN

IMAGE SMOOTHING

R. ČIEGIS, A. JAKUŠEV and O. SUBOČ

Vilnius Gediminas Technical University

Saulėtekio al. 11, LT-10223 Vilnius, Lithuania

E-mail: {rc, Aleksandr.Jakushev, os}@fm.vtu.lt

Abstract. In this work we consider mathematical models describing nonlinear
diffusion filters. The finite–volume method is used to approximate differential equa-
tions. Parallel algorithms are based on the domain decomposition method. The algo-
rithms are implemented by using ParSol parallelization tool. Theoretical predictions
are compared with results of computational experiments. Application of nonlinear
diffusion filters for analysis of computer tomography images is discussed.

Key words: nonlinear diffusion filters, parallel algorithms, finite-volume method

1. Nonlinear Diffusion Filters

In some applications it is important to make the image multiscale analysis
locally dependent not only on values of the intensity function u but also on
the position in the image X . For example we want to apply a different speed
of diffusion process in different parts of the image or for different ranges of
the intensity function. In such situations the following nonlinear diffusion
problems can be used [4]

∂b(X, u)

∂t
=

2
∑

i=1

∂

∂xi

(

g
(∣

∣∇Gσ ∗ β(X, u)
∣

∣

)

,
∂β(X, u)

∂xi

)

+ f(u0 − u), (1.1)

or

∂b(X, u)

∂t
=

2
∑

i=1

∂

∂xi

(

g
(
∣

∣∇Gσ ∗ b(X, u)
∣

∣

)

,
∂β(X, u)

∂xi

)

+ f(u0 − u). (1.2)

In the points, where the derivative β′

u is small (b′u is large) the diffusion process
is slowed down, while where β′

u is large (b′u is small) this process is fasted up.
Interesting examples of application of such nonlinear diffusion problems are
given in [4, 5].

382 R. Čiegis, A. Jakušev, O. Suboč

2. Finite–Difference Approximations

2.1. Explicit approximation

∂tU
n+1

ij =

2
∑

α=1

∂+
xα

(

aα(Un
ij) ∂−

xα

Un
ij

)

+ f
(

u0,ij − Un
ij

)

, (2.1)

where aα defines the discrete approximation of the nonlinear diffusion coeffi-
cient at the boundary of each control volume, e.g.:

a1,i+1/2,j = g
((

(∂+
x1

V n
ij)2+

(∂+
x2

V n
ij + ∂−

x2
V n

ij + ∂+
x2

V n
i+1,j + ∂−

x2
V n

i+1,j

4

)2)1/2)

,

where V n
ij = Gσ ∗ Un

ij . The convergence of this scheme is investigated in [1].

2.2. Semi-implicit approximation

∂tU
n+1

ij =
2

∑

α=1

∂+
xα

(

aα(Un
ij) ∂−

xα

Un+1

ij

)

+ f
(

u0,ij − Un
ij

)

. (2.2)

At each iteration the obtained sparse system of linear equations is solved
by iterative Conjugate Gradient (CG) algorithm. Let us write a linear system
for solving one iteration of (2.2) as

AV = F , V = Un+1 , (2.3)

then the preconditioned CG algorithm can be written in the following form
[2]. Let B be a preconditioning matrix.

procedure The serial PCG algorithm

begin
(1) V 0, n = 0, R0 = AV 0 − F,

(2) BW 0 = R0, P 0 = W 0 .

(3) while
(

(W n, Rn) > ε (W 0, R0)
)

(4) Gn = AP n ,

(5) τn+1 =
(W n, Rn)

(Gn, P n)
,

(6) V n+1 = V n − τn+1P
n ,

(7) Rn+1 = Rn − τn+1G
n ,

(8) BW n+1 = Rn+1 .

(9) βn =
(W n+1, Rn+1)

(W n, Rn)
,

(10) P n+1 = W n+1 + βnP n ,

(11) n := n + 1 .

(12) end while
end

Nonlinear Diffusion Algorithms for Image Smoothing 383

3. Parallel Algorithms

The major difficulty in using parallel computers, however, is that writing
a parallel program (or parallelizing existing sequential codes), requires the
knowledge of special methods and tools, which is not trivial to be mastered
[6]. A possibility to improve this situation is the creation of tools to simplify
the parallelization of algorithms. We have developed a new tool, which can be
used for semi–automatic parallelization of data parallel algorithms, that are
implemented in C++.

3.1. Parallel array objects

The aim of ParSol is to bring HPF parallelization simplicity to C++language,
using popular parallelization standards. Hence, the current ParSol library
features are:

• Created for C++ programming language;
• Based on HPF ideology;
• The library heavily uses such C++ features as OOP and templates;
• Only standard C/C++ features are used;
• Currently, MPI 1.1 standard is used to implement parallelization [?, 8];
• ParSol currently is open source library.

At present, ParSol may be used for parallelization of data–parallel or
domain–decomposition algorithms.

ParSol structure and usage

PS_CmArr ay< ElemType, DimCount >

PS_CmArr ay_2D< ElemType >

PS_CmArr ay_1D< ElemType >

PS_CmArr ay_3D< ElemType >

PS_ParArr ay< ElemType,
DimCount >

PS_CustomTopology PS_1DTopology

PS_2DTopology

PS_3DTopology

…

…

PS_ParArr ay_2D<ElemType> PS_ParArr ay_1D<ElemType> … PS_ParArr ay_3D<ElemType>

Figure 1. ParSol library class diagram.

ParSol class diagram is shown in Fig. 1. The main elements of the library
are:

384 R. Čiegis, A. Jakušev, O. Suboč

Parallel array classes.

If parallel arrays are to be used in place of sequential ones, it is natural to
make them to be descendants of appropriate sequential arrays, adding paral-
lelization code to the sequential array functionality. However, parallelization is
similar for different kinds of arrays. So parallelization code is localized in class
PS ParArray, and is used in parallel array classes by multiple inheritance.

Parallelization.

A general schema for construction of data parallel algorithms consists of the
following steps:

1. Determine the part of sequential array that belongs to the given process;
2. Determine the neighbour processes that will participate in information

exchange;
3. Determine the amount of data to be exchanged with every neighbour

process;
4. Exchange information with neighbours, when required.

Stencil classes.

A stencil is determined depending on requirements of the computational
scheme. Based on stencil, different amount of information needs to be ex-
changed among neighbours. This part of data is required for parallel arrays
to operate properly.

To use ParSol, a programmer must develop his/her sequential application
in the same way as without ParSol, only using ParSol arrays wherever com-
putational data is stored. The other requirements are to specify the stencil,
make algorithm independent on the order in which array points are processed
and use global array operations provided by ParSol wherever possible. The
last one may also be called an advantage, because it frees programmer from
implementation of simple tasks, allowing to concentrate on problem solving,
and makes code cleaner.

The parallelization of such a sequential program takes the following steps:

1. Replace includes of sequential headers with parallel ones, for example
PS CommonArray.h to PS ParallelArray.h;

2. Replace sequential classes with their parallel analogy in variable declara-
tions only;

3. Add MPI initialization code (one line at the beginning of the program);

4. Add topology initialization code (in its simplest case, one line at the be-
ginning of the program);

5. Specify when array neighbours should exchange data.

Finally, MPI library should be linked during a building process.

Nonlinear Diffusion Algorithms for Image Smoothing 385

3.2. Computational experiments

In this section we present some results of computational experiments. Compu-
tations were performed on PC cluster ”Vilkas” of Vilnius Gediminas technical
university and IBM SP4 computer at CINECA, Bologna.

Explicit nonlinear algorithm (2.1)

We have filtered an artificial image of dimension N × N . First we consider
a parallel implementation of the explicit nonlinear algorithm (2.1). Table 1
presents experimental speedup Sp(N) and efficiency Ep(N) values for solving
problems of different size on PC cluster ”Vilkas”. Here p is the number of
processors,

Sp(N) =
T1(N)

Tp(N)
, Ep(N) =

Sp(N)

p

and Tp(N) is CPU time required to solve the problem with p processors.

Table 1. The speedup and efficiency for explicit algorithm (2.1) on PC cluster.

p Sp(160) Ep(160) Sp(240) Ep(240) Sp(320) Ep(320)

2 1.56 0.780 1.76 0.880 1.87 0.934
4 2.36 0.590 3.00 0.750 3.45 0.862
6 2.78 0.463 3.93 0.655 4.77 0.795
8 2.95 0.369 4.69 0.585 5.88 0.735
9 3.16 0.351 5.04 0.560 6.28 0.698

11 3.33 0.303 5.50 0.500 7.09 0.644
12 3.35 0.279 5.64 0.470 7.47 0.623
15 3.39 0.226 6.38 0.425 8.56 0.571

Table 2 presents experimental speedup Sp(N) and efficiency Ep(N) values
for solving the same problem on SP4 computer. The following CPU times
T1(N) (in s) were obtained for the sequential algorithm

T1(80) = 57.24, T1(160) = 471.2, T1(320) = 770.4.

Semi–implicit nonlinear algorithm (2.2)

Next we consider a parallel implementation of the semi–implicit nonlinear
algorithm (2.2). The main computational steps are the following:

• Pre-smoothing of the image. A few steps of the explicit linear scheme are
done.

• Solution of a system of linear equations by the CG iterative method.

386 R. Čiegis, A. Jakušev, O. Suboč

Table 2. The speedup and efficiency for explicit algorithm (2.1) on SP4.

p Sp(80) Ep(80) Sp(160) Ep(160) Sp(320) Ep(320)

2 1.975 0.988 1.984 0.992 2.004 1.002
3 2.794 0.931 2.950 0.985 2.970 0.990
4 3.741 0.935 3.928 0.982 3.986 0.996
6 5.168 0.861 5.463 0.910 5.916 0.986
8 6.766 0.846 7.293 0.911 7.831 0.979
9 6.784 0.754 7.604 0.845 8.467 0.941

12 8.701 0.725 10.19 0.849 11.216 0.934
16 10.84 0.677 12.75 0.797 15.041 0.940
24 14.18 0.591 18.24 0.760 21.961 0.915

Implementation of one CG iteration requires to compute matrix–vector

multiplication, which is equivalent to application of the explicit difference
scheme and global reduction operation, when inner–product of two vectors is
computed. Such operation is implemented as a built-in method of parallel
array objects of ParSol tool.

Scalability analysis of parallel preconditioned CG algorithms is done in
[7, 3]. Table 3 presents CPU times Tp(N) (in s) required to solve the given
image processing problem on SP4 computer for different sizes of images.

Table 3. CPU times Tp(N) for implicit nonlinear algorithm (2.2.)

p Tp(160) Tp(320) Tp(480)

1 64.97 241.4 281.9
2 26.82 86.71 118.5
4 12.89 40.37 63.94
6 9.24 26.91 42.84
8 7.59 21.37 32.44

16 4.83 10.30 16.44

4. Processing of CT Images

One of the topical problems in computed tomography (CT) is reliable allo-
cation of ischemic stroke area. A precise solution of this problem allows us
to evaluate the volume of stroke and helps the medics to select the tactic of
treatment properly. Possibility to solve this problem quickly enables automatic
processing of CT images. The aim our research is to develop a specialized soft-
ware and to implement it as a tool. High rates of calculations can be achieved

Nonlinear Diffusion Algorithms for Image Smoothing 387

by using parallel computing, which allows to use personal computers of small
hospital.

Stroke region in CT images can be of various size and form, but in all cases
sorption susceptibility of touched area is 1.5-2 times larger. The example of
CT image is given in 2a, the size of the image is 512X512 pixels.

a) b)

c) d)

Figure 2. An image of human brain ischemic stroke in computed tomography
(ischemic stroke region is denoted by darker color): a) the initial image, b) after 20
iterations, c) after 40 iterations, d) after 100 iterations.

In CT processing it is important not to disturb contours of the stroke
area, since they are used for calculation of the volume of stroke area. This
information is important for medics. One of advantages of non-linear filters is
to preserve edges of the images. On figures 2b,c,d results of CT filtering by
non-linear diffusion filters are presented after 20, 40 and 100 iterations.

It visible from results of filtering, contours of the image are not disturbed,
thus a localization of CT stroke area is possible by using standard procedures
(for example, differential filters). For such localization there is no need to
perform 100 iterations, since we can see good enough results after 40 or less
iterations. We note that apriori estimation of required number of iterations is
not a simple task. It is even more important if we try to develop a specialized
tool for automatic detection of stroke region. As it follows from results of
numerical experiments (see 2c,d), nonlinear filters are not damaging the image
even after large number of unnecessary iterations. This simplifies their usage
for automatic recognition of stroke area.

388 R. Čiegis, A. Jakušev, O. Suboč

Acknowledgments

R. Čiegis did some part of this work under the Project HPC–EUROPA (RII3–
CT-2003-506079), with the support of the European Community – Research
Infrastructure Action under the FP6 ”Structuring the European Research
Area” Programme. He gratefully acknowledges the hospitality and excellent
working conditions in CINECA, Bologna. In particular he thanks Dr. Giovanni
Erbacci for his help.

References

[1] F. Catte, P.L. Lions, J.M. Morel and T. Coll. Image selective smoothing and
edge detection by nonlinear diffusion. SIAM J. Numer. Anal., 29(1), 182 – 193,
1992.

[2] G.H. Golub and Ch. Van Loan. Matrix Computations. The Johns Hopkins
University Press, Baltimore, 1996.

[3] A. Gupta, V. Kumar and A. Sameh. Performance and scalability of precondi-
tioned conjugate gradient methods on parallel computers. IEEE Transactions

on Parallel and Distributed Systems, 6(5), 455 – 469, 1997.
[4] J. Kačur and K. Mikula. Slow and fast diffusion effects in image processing.

Comput. Visual. Sci., 3, 185 – 195, 2001.
[5] K. Mikula. Image processing with partial differential equations.
[6] P. Pacheco. Parallel programming with MPI. Morgan Kaufmann Publishers Inc.,

San Francisco, 1997.
[7] R.Čiegis. Analysis of parallel preconditioned conjugate gradient algorithms. In-

formatica, 16(3), 317 – 332, 2005.
[8] M. Snir, S. Otto, S. Huss-Lederman, D. Walker and J. Dongarra. MPI: the

complete reference. The MIT Press, 1, 1998.

