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Abstract. This contribution is devoted to investigation by methods of mathemati-
cal modelling of multiwave Volume Free Electron Laser (VFEL). Special emphasis is
placed to consideration of three-wave VFEL. The results of mathematical modelling
confirmed preliminary estimates. Computer code VOLC for simulation of different
schemes of two- and three-wave VFEL is described.
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1. Introduction

At present time FELs (Free Electron Lasers) based on different radiation
mechanisms are constructed for different wave-length ranges: from centimeter
to ultraviolet [6]. Volume Free Electron Laser (VFEL) based on mechanism
of multiwave volume distributed feedback (VDFB) was proposed firstly in [3],
theoretically investigated in [2] and constructed in 2001 [1]. VDFB allows to
reduce significantly starting currents and to tune laser frequency. It provides
also mode discrimination in oversized systems (systems with transverse linear
sizes essentially exceeding generation wavelength). This gives a possibility of
generation in a large volume, distribution of high current beam over large
cross-section and reducing of electrical load on laser elements.

This article is devoted to investigation by methods of mathematical mod-
elling of multiwave VFEL. Our previous investigations were devoted to nu-
merical modelling of VFEL with two-wave distributed feedback. Theoretical
investigations show the great advantage of different multiwave diffraction ge-
ometries and in particular of three-wave diffraction geometry. Generation in
multiwave distributed feedback geometry has many advantages including las-
ing in inaccessible for traditional schemes range of parameters.
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2. Brief Review of Basic VFEL Operation Principles

Electron beam with initial electron velocity u and current density j in VFEL
(see Fig. 1) can move close to the target or through the target that is a
three-dimensional spatially-periodic structure of the length L. Under diffrac-
tion conditions some strong coupled waves are generated. Under proper phase
conditions electrons of the beam group in a deceleration phase and produce
stimulated emission. In the case of amplification regime external electromag-
netic waves are incident to the target. Generator regime can be realized and
oscillator regime is realized without external waves.
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Figure 1. Three-wave VFEL (Bragg-Bragg geometry).

There are three possible geometries in three-wave system. In Bragg-Bragg
case, depicted in Fig. 1, we deal with the following geometry:

(k1,n) > 0, (k2,n) < 0, (k3,n) < 0,

where n is a normal relative to the surface. Laue-Laue geometry is realized
when

(k1,n) > 0, (k2,n) > 0, (k3,n) > 0.

Bragg-Laue geometry is the case when waves are oriented so that

(k1,n) > 0, (k2,n) < 0, (k3,n) > 0.

3. Mathematical Model of VFEL

The system of equations for all cases of VFEL is obtained from the Maxwell
equations in the slowly-varying envelope approximation.

Mathematical model describing nonlinear processes developing in three-
wave VFEL has the following form:
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Ei(0, z) = 0, i = 1, 2, 3,

where t > 0, z ∈ [0, L], p ∈ [−2π, 2π]. This system is a system of integro-
differential equations with temporal argument t, spatial coordinate z and ini-
tial electron phase p. Amplitudes of electromagnetic field E1(t, z), E2(t, z),
E3(t, z) and coefficients a and b are complex-valued. Φ is imaginary. Function
Θ(t, z, p) describes phase of electron beam relative to electromagnetic wave.
Θ and coefficient Ψ are real. k1 is a projection of wave vector k1 on axis z. ω

is a field frequency. Values of boundaries L2 and L3 for wave vectors k2 and
k3 take values 0 or L depending on geometry considered.

Numerical methods to solve the system (3.1)-(3.4) are similar to methods
proposed in [4, 5] for simulation of two-wave VFEL.

Let us formulate the system of equations and boundary conditions for com-
mon case of n-wave coplanar distributed feedback geometry in the following
form:

∂E

∂t
+ A

∂E

∂z
+ BE = G(I), (3.5)

where E = (Ei)
T . Boundary conditions (3.4) are changed to the next form:

Ei(t, Li) = E0

i
, i = 1, . . . , n. (3.6)

Diagonal matrix A contains direction cosines of wave vectors ki. Matrix B

describes dynamical diffraction in the system.

4. Computer Code VOLC

Computer code VOLC that means VOLume Code was developed on the basis
of multiple Fortran codes, created in 1991–2005 years. Its interface is pre-
sented in Fig. 2. This code realizes different geometries of two- and three-wave
VFEL. Dimensionality is 2D (one spatial coordinate and one phase space coor-
dinate) plus time. Algorithm of VOLC is presented in Fig. 3. VOLC was tested
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with carping. There were tested different regimes as oscillator and amplifier
regimes, SASE (Self-Amplified Spontaneous Emission), BWT (backward wave
tube), TWT (travelling wave tube), BWT-TWT, BWT-BWT-TWT and oth-
ers. All results correspond to theory prediction.

Figure 2. Interface of VOLC.
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Figure 3. VOLC Algorithm.
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5. Results of Numerical Experiments

Some results of numerical experiments carried out using code VOLC are pre-
sented here. Different regimes of three-wave VFEL operation were investi-
gated. We obtained different examples of establishment of nonstationary so-
lution including steady-state smooth solutions, oscillations, as well as chaotic
regimes. In Fig. 4 the periodic regime of VFEL intensity in Bragg-Bragg ge-
ometry and corresponding phase space portrait are given. It is evident that
after establishing of periodic regime we deal with periodic 1T and 2T regimes.
This is illustrated in Fig. 5 and Fig. 6a but with some computational noise.

One of the important parameters in VFEL operating is a current thresh-
old jth. It is a minimal current density at which the process of generation
begins. The possibility to reduce the current threshold is one of the main
advantage of VFEL compared to other generator of electromagnetic energy.
This was confirmed in numerical experiments carried out. In Fig. 6b the com-
parison of dependence of current threshold jth on the length of the target L is
demonstrated for two- and three-wave geometry. This is a good illustration of
effectiveness of volume distributed feedback. It is evident that the threshold
current can be significantly decreased in multiwave diffraction geometry.
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Figure 4. Periodic regimes of VFEL intensity (a) and corresponding phase space
portrait (b).

6. Conclusions

Mathematical models and computer code VOLC described here can be used
effectively in modelling of nonlinear regimes of VFEL operation. They will
be useful for providing experiments on VFEL on the installations created at
the Research Institute for Nuclear Problems of Belarusian State University.
Authors thank Prof. V. G. Baryshevsky for permanent interest to their work.
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Figure 5. Fourier 1T periodic regimes corresponding to amplitudes E2 (a) and E3

(b) from Fig. 4.
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Figure 6. (a) Fourier 2T periodic regime corresponding to amplitude E1 from
Fig. 4. (b) Dependence of current threshold jth on length of the target L for two-
wave VFEL (solid line) and three-wave VFEL (dashed line).
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