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Abstract. The paper presents an outline of the proof of convergence of Schwarz
Domain Decomposition algorithm for subdomains with non-regular multiple over-
lapping. This result is shown for linear PDE’s fulfilling the maximum principle.
The proof provides the sufficient condition, which describes in geometric terms the
admissible structure of overlapping.
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1. Introduction

Domain Decomposition is a method allowing to solve efficiently Partial Dif-
ferential Equations. It is used for parallelization of numerical algorithms. Ex-
tensive literature exists dealing with the theory and numerical aspects of this
method (e.g. [2, 3]). Domain decomposition, however, is used also to numeri-
cally solve PDE’s in complex geometries, where generation of global grid may
be very difficult (Chimera method). This is particularly true, in the presence
of moving and free boundaries.

In this approach the complex computational domain is divided into the
union of simpler subdomains, which may overlap in a non-regular manner. As
a rule, multiple overlaps appear between groups of subdomains. The PDE is
solved locally on each subdomain, while the global solution is obtained by ite-
ratively adjusting the boundary conditions on each subdomain and repeating
this procedure until the convergence is obtained.

Present method relies on using blending functions which allow the subdo-
mains to overlap in almost arbitrary manner including multiple overlaps. This
approach was first applied for numerical solution of Navier-Stokes and Euler
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equations in [1, 4]. However, to the authors knowledge, no proof of conver-
gence of the Schwarz alternating algorithm for irregular overlapping was yet
presented. The present paper introduces such proof, extending earlier ideas
used for regular overlapping.

2. The General Problem

Let’s consider the problem to find u ∈ V (Ω) such that

L(u) = f,

u|∂Ω = g,
(2.1)

where L is a linear operator, fulfilling the maximum principle

inf(g) < R(Ω, g, 0)(x) < sup(g) ∀x ∈ Ω \ ∂Ω, (2.2)

where R(Ω, g, f) denotes the exact solution of the general problem (2.1).

3. Schwarz Method

We first choose a decomposition of the domain Ω = ∪Ωi, i = 1, . . . , k. To
find the global solution u∗ = R(Ω, g, f), the Schwarz method consists of the
following steps.

• Set a first guess u0 such that u0|∂Ω = g.
• Define a sequence for n ≥ 0:

ui
n+1 = R(Ωi, un|∂Ωi

, f),

un+1 =
∑k

i=1 χiu
i
n+1.

The objective of the present paper is to prove convergence of this sequence to
u∗. The blending functions χi has to fulfill conditions (see also [4]):

i) 0 ≤ χi ≤ 1,
∑k

i=1 χi = 1 i = 1, . . . , k,

ii) χi|∂Ωi\∂Ω = 0,

iii) supp(χi) ⊂ Ωi.

4. Some Observations

To proof the convergence, we need to set some geometrical condition to sub-
domains. They will result from the following observations:

1. The error on ∂Ω is zero in each step

(ui
n − u∗)|∂Ω = 0. (4.1)



Domain Decomposition with Non-Regular Multiple Overlapping 119

2. The error on the subdomain Ωi in each step fulfill

ui
n+1 − u∗ = R(Ωi, b, 0), (4.2)

where b = (ui
n − u∗)|∂Ωi

.
3. Using the maximum principle and the equation (4.2) we obtain the esti-

mation

inf(ui
n−u∗)|∂Ωi

< (ui
n+1−u∗)(x) < sup(ui

n−u∗)|∂Ωi
∀x ∈ Ωi \∂Ωi. (4.3)

4. If we choose two different initial guesses such that

v(x) < (>)u(x) ∀x ∈ Ω \ ∂Ω, (4.4)

then in each step we have

vn(x) < (>)un(x) ∀x ∈ Ω \ ∂Ω. (4.5)

Proof. By induction we have

vn − un =

k
∑

i=1

χi(v
i
n − ui

n),

but the right-hand side terms can be estimated by

vi
n − ui

n = R(Ωi, (v
i
n−1 − ui

n−1)|∂Ωi
, 0) < sup(vn−1 − un−1)|∂Ωi

< 0.

Using further the maximum principle we get (4.5). The proof of the second
inequality is analogous. �

5.

u0(x) > u∗(x) ∀x ∈ Ω \ ∂Ω ⇒ ∀n un(x) > u∗(x) ∀x ∈ Ω \ ∂Ω,

u0(x) < u∗(x) ∀x ∈ Ω \ ∂Ω ⇒ ∀n un(x) < u∗(x) ∀x ∈ Ω \ ∂Ω.

The proof follows from 3, because using u∗ as the initial element we get a
constant sequence.

6. It is enough to find two initial guesses

u+ > u∗ > u−, (4.6)

such that

u+
n −→ u∗, u−

n −→ u∗, (4.7)

then for every u+ > v0 > u−, the sequence vn −→ u∗.

The proof follows from 4.
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Figure 1. Example of non-regular overlapping

5. Proof of the Convergence

The partition into subdomains must fulfill some geometrical condition (see
Fig. 1). The formal proof describes the necessary condition taking advantage
of linearity of the PDE. It will be shown that the error is bounded by a
geometric sequence and sup(|un − u∗|) ↘ 0.

To describe these conditions, we need to introduce some notation:

• Γi = ∂Ωi

• Ω0
i = Ωi , Ω1

i = Ω \ Ωi

• Λj = {Γj ∩ (
⋂

i=1,...,k Ω
s(i)
i ); s ∈ {0, 1}k}

• Λ =
⋃

Λi

For each Ωi define the sets

I(Ωi) = {τ ∈ Λ; τ ⊂ Ωi ∧ ∂Ωi ∩ τ = ∅},

P (Ωi) = {τ ∈ Λ; τ ⊂ Ωi ∧ ∂Ωi ∩ τ 6= ∅}.

We define recursively on Λ the subsets:

B0 = {τ ∈ Λ; τ ⊂ ∂Ω},

O0 = {Ωi; ∃τ ∈ B0 τ ⊂ ∂Ωi},

In = {τ ∈ Λ; ∃Ωj ∈ On τ ⊂ I(Ωj)},

Pn = {τ ∈ Λ; ∃Ωj , Ωi ∈ On, i 6= j τ ⊂ P (Ωi) ∩ P (Ωj), }

Bn+1 = Bn ∪ In ∪ Pn,

On+1 = On ∪ {Ωi; ∃τ ∈ Bn+1 τ ⊂ ∂Ωi}.

Theorem 1. If there is m such that Bm = Λ, then the Schwarz method con-

verges and q < 1 exists, such that:

‖un+m − u∗‖L∞ ≤ q‖un − u∗‖L∞ . (5.1)

Proof. Step 1: We show, that it is enough to estimate the error on the in-
terfaces of the subdomains. Without loss of generality we can choose a initial
guess which has a positive error in all Ω.
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u+ > u∗. (5.2)

Then from observations 3 and 5 it follows that the error is positive in each
step of the Schwarz method, and the subsolutions fulfill

0 < (ui
n+1 − u∗)(x) < sup(ui

n − u∗)|∂Ωi
∀x ∈ Ωi \ ∂Ωi. (5.3)

Then we can estimate the global error

0 < (un+1 − u∗)(x) <

k
∑

i=1

(χi(x) sup(ui
n − u∗))|∂Ωi

∀x ∈ Ω \ ∂Ω. (5.4)

So, it is enough to show that

k
∑

i=1

(χi(x) sup(ui
n − u∗))|∂Ωj

−→ 0 ∀j, (5.5)

or equivalently
max

j
{sup(un − u∗)|∂Ωj

} −→ 0. (5.6)

Step 2: Let M = maxj{sup(un−u∗)|∂Ωj
}. We prove inductively by k, that

sup
τ∈Bk

(un − u∗)|τ < M =⇒ sup
τ∈Bk+1

(un+1 − u∗)|τ < M. (5.7)

For B0 we have supτ∈B0
(un−u∗)|τ = 0 ∀n. Then we show for each subset

that Bk+1 = Bk ∪ Ik ∪ Pk. Note the following simple implications

∀i = 0, . . . , k ai < M =⇒
k

∑

i=1

χi(x)ai < M, (5.8)

∀i = 0, . . . , k ai ≤ M ∧ ∃j : aj < M, χj(x) > 0 =⇒
k

∑

i=1

χi(x)ai < M. (5.9)

If τ ∈ Bk, then (5.7) follows from the inductive assumption. If τ ∈ Ik ,
then it is inside of some subdomain Ω′ where

inf(un − u∗)|∂Ω′ < M. (5.10)

It follows from the inductive assumption and definition of Ik , as well as from
observation 3 we see that at least one of the subsolution on Ω ′ \ ∂Ω′ will be
smaller that M . This is a example of the implication (5.8).

If τ ∈ Pk, then there is a point x0 where the error for some subdomain
is (ui

n+1 − u∗)(x0) = M . However, from the definition of Pk, it follows that
the weight χi(x0) < 1 for some neighborhood of x0 and there exists a second
subdomain where (uj

n+1 − u∗)(x0) < M , because x0 ∈ Ωj \ ∂Ωj . This is a
example of the implication (5.9). Thus the inductive step is finished.
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The condition Bm = Λ ensures that the error decreases after m steps of
the Schwarz method.

Step 3: Estimation of the error by a geometric sequence.
To show Theorem 1 we choose the initial guess

ũ0(x) =

{

u∗(x) + M if x ∈ Ω \ ∂Ω,

u∗(x) if x ∈ ∂Ω.
(5.11)

and by the monotony (4.5) of the sequence we can estimate

‖um − u∗‖L∞ ≤ ‖ũm − u∗‖L∞ ≤ q‖ũ0 − u∗‖L∞ = q‖u0 − u∗‖L∞ , q < 1.

(5.12)
This estimation does not depends on M , because the operator L is linear

so
α(ũm) = (αũ0)m. (5.13)

�
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