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Abstract. We discuss the convergence analysis and error estimates for an Eulerian-
Lagrangian method for transient convection-diffusion equations. An ε-uniform opti-
mal-order error estimate is presented to show the strength of the scheme.
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1. Introduction

Transient convection-diffusion partial differential equations of the form

ct + ∇ · (v(x, t)c) − ε∇2c(x, t) = f(x, t), (x, t) ∈ Ω × [0, T ] (1.1)

arise in the mathematical model of petroleum reservoir simulation, environ-
mental modeling, and other applications [4, 6]. Here v(x, t) is fluid velocity,
f(x, t) is a given function, and c(x, t) is the concentration of a dissolved sub-
stance. Ω ⊂ R

d is a bounded domain. 0 < ε << 1 scales the diffusion and
quantifies the convection-dominance of Eq. (1.1).

These problems admit solutions with moving steep fronts and complex
structures, and present serious mathematical and numerical difficulties. Clas-
sical centered finite difference or finite element methods tend to generate
numerical solutions with nonphysical oscillations. Upwinding techniques are
widely used to stabilize the numerical approximations, but they often pro-
duce numerical solutions with excessive numerical diffusion that smears out
the moving steep fronts and generates spurious grid orientation effects [4].

Characteristic methods have been developed to overcome the numeri-
cal difficulties by combining the convection term with the capacity term in
the transient convection-diffusion equations, and carry out the temporal dis-
cretization via a characteristic tracking algorithm. Consequently, these meth-
ods reduce time truncation errors significantly and generate accurate numeri-
cal solutions even if large time steps and coarse spatial grids are used. However,
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many earlier characteristic methods often fail to conserve mass, which is of
essential importance in applications.

The Eulerian-Lagrangian localized adjoint method (ELLAM) [2] was for-
mulated to conserve mass and to treat general boundary conditions, while
retaining the numerical advantages of earlier characteristic methods. The EL-
LAM is competitive with many numerical methods [9, 10] and has been used
in applications [12]. In this paper we address the issues of error estimates for
the ELLAM schemes for transient convection-diffusion equations.

2. The Eulerian-Lagrangian Localized Adjoint Method

Let 0 = t0 < t1 < · · · < tn < · · · < tN = T be a temporal partition of [0, T ]
with ∆tn = tn − tn−1. In the ELLAM formulation the test functions w(x, t)
are chosen from the Sobolev space H1(Ω) for each time t ∈ (tn−1, tn]. The
test functions w(x, t) are continuous in time except at time tn−1, at which
w(x, t) is left continuous and has right limit with respect to time t. Multiply
Eq. (1.1) by such w(x, t), integrating the resulting equation on Ω× (tn−1, tn],
and incorporating the boundary condition (we assume noflow boundary for
the sake of exposition of the ideas) yields a space-time weak formulation

∫

Ω

c(x, tn)w(x, tn) dx +

∫ tn

tn−1

∫

Ω

ε∇w(y, θ) · ∇c(y, θ) dydθ

−
∫ tn

tn−1

∫

Ω

c(y, θ)
[

wθ(y, θ) + v(y, θ) · ∇w(y, θ)
]

dydθ

=

∫

Ω

c(x, tn−1)w(x, t+n−1) dx +

∫ tn

tn−1

∫

Ω

f(y, θ)w(y, θ) dydθ,

(2.1)

where w(x, t+n−1) = limt→t+
n−1

w(x, t) takes into account for the fact that

w(x, t) might be discontinuous at time tn−1.

In the ELLAM formulation [2, 10] the test functions w(y, θ) are defined to
satisfy the homogeneous hyperbolic equations, given by the hyperbolic part
of the adjoint equations [10]

wθ(y, θ) + v · ∇w(y, θ) = 0, (y, θ) ∈ Ω × (tn−1, tn]. (2.2)

This equation can be rewritten as the following ordinary differential equation

dw(r(θ;x, tn), θ)

dθ
= 0, w(r(θ;x, tn), θ)

∣

∣

∣

θ=tn

= w(x, tn). (2.3)

along the characteristic curve y = r(θ;x, tn) which passes through x at time
θ = tn. This equation shows that once they are defined in Ω at time step tn,
the test functions w(x, t) are completely determined in the space-time domain
Ω × (tn−1, tn] by a constant extension along the characteristic curves.

Applying a first-order Euler approximation along the characteristic curve
to evaluate the source and sink term and the diffusion term yields
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∫ tn

tn−1

∫

Ω

f(y, θ) w(y, θ) dydθ = ∆tn

∫

Ω

f(x, tn)w(x, tn) dx + Ef (c, w),

∫ tn

tn−1

∫

Ω

ε∇w(y, θ) · ∇c(y, θ) dydθ

= ∆tn

∫

Ω

ε∇w(x, tn) · ∇c(x, tn) dx + Eε(c, w).

(2.4)

Here Ef (c, w) and Eε(c, w) are the local truncation error terms due to the use
of the Euler quadrature to the source and sink term and the diffusion term.

Incorporating Eq. (2.4) into the weak form (2.1), we obtain an Eulerian-
Lagrangian reference equation for problem (1.1)

∫

Ω

c(x, tn)w(x, tn) dx + ∆tn

∫

Ω

ε∇w(x, tn) · ∇c(x, tn) dx

=

∫

Ω

c(x, tn−1)w(x, t+n−1) dx + ∆tn

∫

Ω

f(x, tn)w(x, tn) dx

+Ef (c, w) − Eε(c, w).

(2.5)

We point out that the ELLAM formulation (2.5) leads to a self-adjoint
and coercive bilinear form for a non-self-adjoint transient convection-diffusion
problem (1.1). Computationally, the discrete system is solved on a fixed Eule-
rian spatial grid at time step tn even though (2.5) is an Eulerian-Lagrangian
formulation. The characteristic tracking algorithm is carried out only to evalu-
ate the first term on the right-hand side. Thus, this algorithm has no effect on
the solution grid or the data structure of the discrete system at all. Therefore,
the ELLAM formulation does not suffer from the complication of distorted
grids which complicates many forward characteristic methods. Moreover, the
ELLAM formulation leads to mass-conservative numerical methods [2, 11]and
generates accurate numerical solutions with minimal numerical artifacts even
if large time steps and spatial grids are used [9, 10].

3. On Error Estimates of ELLAM Schemes

In this section we address the issues on error estimates for ELLAM schemes for
transient convection-diffusion equations. Let W m

p (0, 1) be the Sobolev spaces
[3] that consist of functions whose derivatives up to order-m are p-th Lebesgue
integrable in (0, 1). Let Lp(0, 1) = W 0

p (0, 1) and Hm(0, 1) = W m
2 (0, 1). For

any Banach space X , we introduce Sobolev spaces involving time

W m
p (0, T ; X) :=

{

f(x, t) :
∥

∥

∥

∂αf

∂tα
(·, t)

∥

∥

∥

X
∈ Lp(0, T ), 0 ≤ α ≤ m, 1 ≤ p ≤ ∞

}

‖f‖W m

p
(0,T ;X) :=



















(

m
∑

α=0

∫ T

0

∥

∥

∥

∂αf

∂tα
(·, t)

∥

∥

∥

p

X
dt

)1/p

, 1 ≤ p < ∞,

max
0≤α≤m

ess sup
(0,T )

∥

∥

∥

∂αf

∂tα
(·, t)

∥

∥

∥

X
, p = ∞.
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We also use the discrete norm ‖f‖L̂2(0,1) in which the middle-point rule is
used to evaluate the integral at each spatial cell. Similarly, in the discrete
norm ‖f‖L̂p(0,T ;X) the temporal integral is replaced by a discrete summation
sampled at the discrete time steps tn for n = 0, 1, . . . , N .

3.1. Optimal-order error estimates

The theoretical analysis for ELLAM schemes introduces further difficulties
to the already complicated analyses of characteristic methods. These issues
include simultaneous a priori estimates for unknowns in interior and at outflow
boundaries, and those due to the special treatment of the boundary for the
sake of mass conservation. The author and collaborators proved a generalized
weighted Sobolev inequality, and utilized the inequality to derive an optimal-
order error L2 estimate

‖ch − c‖L̂∞(0,T ;L2(0,1)) ≤ K∆t
(

‖cτ‖L2(0,T ;W 1,∞(0,1)) + ‖c‖L∞(0,T ;H2(0,1))

+ ‖fτ‖L2(0,T ;L2(0,1))

)

+ K(∆x)2‖ct‖L2(0,T ;H2(0,1)) (3.1)

and a superconvergence estimate

‖(ch − c)x‖L̂∞(0,T ;L̂2(0,1) ≤ K∆t
(

‖cτ‖L2(0,T ;W 1,∞(0,1)) + ‖c‖L∞(0,T ;H3(0,1))

+ ‖fτ‖L2(0,T ;L2(0,1))

)

+ K(∆x)2‖ct‖L2(0,T ;H2(0,1)) (3.2)

for the ELLAM scheme with piecewise-linear finite-element approximations
for the one-dimensional analogue of problem (1.1) in Ω = (0, 1) [11]. Here cτ

refers to the material derivative of c along the characteristic curves. K is a
constant that is independent of the mesh parameters ∆t and ∆x, but could
potentially depend on ε. We notice that the coefficients of ∆t are much smaller
than the coefficients of ∆x. So this estimate theoretically justifies the use of
large time steps in ELLAM schemes.

However, these analyses were based on a generalized weighted Sobolev in-
equality the authors proved, which in turn depends on the Sobolev embedding
theorem H1(Ω) ↪→ C(Ω). This is true only in one space dimension. Hence, the
analyses would not carry over to multi-dimensional problems. An alternative
approach was developed to derive an optimal-order L2 error estimate and a
superconvergence estimate for the ELLAM scheme for problem (1.1) in mul-
tiple space dimensions in [8]. A different but related method to the ELLAM
is the characteristic mixed finite element method [1], which uses piecewise-
constant space-time test functions. As with the standard mixed finite element
method, a coupled system results for both the concentration and the diffusive
flux. The theoretically proven error estimate is O((∆x)

3
2 ) for grid size ∆x,

which is suboptimal by a factor O((∆x)
1
2 ).
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3.2. An ε-uniform optimal-order error estimate

In the estimate (3.1), the coefficients K and the norms of the true solution
c depend on ε. Namely, as ε decreases, the coefficients could potentially in-
crease. This type of error estimates, which has also been proved for many
other numerical methods for convection-diffusion equations, has drawn some
debates. Some researchers argue that it is useless in practice since the coeffi-
cients could potentially blow up as ε tends to zero. They advocate an estimate
that holds uniformly with respect to ε. Others argue that the size of diffusion
is always fixed in practice. For smaller ε, the true solution c will have steeper
fronts and hence requires refined spatial grids and time steps. In any case,
both sides agree that an ε-uniform error estimate would be ideal.

In the context of stationary convection-diffusion equations, these issues
have been addressed either by the use of upwinding techniques that stabilize
the numerical methods or by adoption of a delicately designed local grid re-
finement near the boundary layer that was originally due to Shishkin ([5, 7]
and the references therein). In particular, the Shishkin mesh approach has suc-
cessfully resolved the boundary layer problem with a simple piecewise-uniform
grid. More importantly, an ε-uniform L∞ error estimate has been proved for
numerical methods with Shishkin mesh.

In the context of transient convection-diffusion equations the situation
becomes less obvious, because the dynamic steep fronts do not always coincide
with computational mesh in general due to the complex structures (especially
in multiple space dimensions). This is somewhat similar to the reason why
L∞ error estimate is not very suited for the numerical methods for hyperbolic
conservation laws. In this conference the author has presented his work on an
ε-uniform error estimate for the ELLAM scheme with a uniform space-time
partition (and with no upwinding or stabilization introduced in the scheme)
for problem (1.1) in one space dimension

‖ch − c‖L̂∞(0,T ;L2) +
√

ε‖(ch − c)x‖L̂2(0,T ;L2(0,1))

≤ K∆t(
√

ε‖co‖H2 + ‖co‖H1 + ‖fτ‖L2(0,T ;L2(0,1))

+‖f‖L2(0,T ;H1(0,1))) + K(min{h, ∆t}+ h2)‖co‖H2(0,1)

+Kλh2(‖co‖H3(0,1) + ‖f‖L2(0,T ;H3(0,1))).

(3.3)

Here the constant K is independent of the true solution c and the parameter ε.
The parameter λ = 0 if the Courant number is less than one and 1 otherwise.
c0 is the prescribed initial condition for c. The derivation of this error estimate
is very long and technical, and hence will be submitted elsewhere.

We note that the coefficients in the estimate (3.3) are independent of ε or
any norm of the true solution c, but depend only on the initial and right-hand
side data c0 and f . Using the theory of interpolation of Sobolev spaces or
Besov spaces and the L2-stability estimates of problem (1.1) and the ELLAM
scheme, we also derive an ε-uniform estimate for the ELLAM scheme when
the given data has less or minimal regularity. Finally, it is easy to check that
for the true solution with an exponential layer, the weighted norm on the
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left-hand side of (3.3) is comparable to L∞ norm. Hence, the estimate (3.3) is
optimal since an ε-uniform L∞ estimate is generally impossible for numerical
methods to transient convection-diffusion equations. In summary, the estimate
(3.3) justifies the strength of the ELLAM scheme theoretically.
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